Understanding the trilemma of fast charging, energy density and cycle life of lithium-ion batteries

被引:241
|
作者
Yang, Xiao-Guang
Wang, Chao-Yang [1 ]
机构
[1] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
关键词
Lithium-ion battery; Fast charging; Energy density; Cycle life; Lithium plating; Temperature-dependent aging; ELECTROCHEMICAL EXPERIMENTS; GRAPHITE ELECTRODE; LOW-TEMPERATURES; CELLS; POSTMORTEM; OPTIMIZATION; MECHANISMS; DEPOSITION; IMPEDANCE; BEHAVIOR;
D O I
10.1016/j.jpowsour.2018.09.069
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Increasing energy density of Li-ion batteries (LiBs) along with fast charging capability are two key approaches to eliminate range anxiety and boost mainstream adoption of electric vehicles (EVs). Either the increase of energy density or of charge rate, however, heightens the risk of lithium plating and thus deteriorates cell life. The trilemma of fast charging, energy density and cycle life are studied systematically in this work utilizing a physics based aging model with incorporation of both lithium plating and solid-electrolyte-interphase (SEI) growth. The model is able to capture the key feature of temperature-dependent aging behavior of LiBs, or more specifically, the existence of an optimal temperature with the longest cycle life. We demonstrate that this optimal temperature is a result of competition between SEI growth and lithium plating. Further, it is revealed that either the increase of charge rate or of energy density accelerates lithium plating induced aging. As such, the optimal temperature for cell life increases from similar to 20 degrees C for a high-power cell at 1C charge to similar to 35-45 degrees C with the increase of charge rate and/or energy density. It would be beneficial to further increase the charge temperature in order to enable robust fast charging of high energy EV cells.
引用
收藏
页码:489 / 498
页数:10
相关论文
共 50 条
  • [21] Fast Charging of Lithium-Ion Batteries: A Review of Materials Aspects
    Weiss, Manuel
    Ruess, Raffael
    Kasnatscheew, Johannes
    Levartovsky, Yehonatan
    Levy, Natasha Ronith
    Minnmann, Philip
    Stolz, Lukas
    Waldmann, Thomas
    Wohlfahrt-Mehrens, Margret
    Aurbach, Doron
    Winter, Martin
    Ein-Eli, Yair
    Janek, Jurgen
    ADVANCED ENERGY MATERIALS, 2021, 11 (33)
  • [22] Fuzzy Controlled Fast Charging System for Lithium-Ion Batteries
    Cheng, Ming-Wang
    Wang, Shih-Ming
    Lee, Yuang-Shung
    Hsiao, Sung-Hsin
    2009 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND DRIVE SYSTEMS, VOLS 1 AND 2, 2009, : 446 - +
  • [23] Fracture of electrodes in lithium-ion batteries caused by fast charging
    Zhao, Kejie
    Pharr, Matt
    Vlassak, Joost J.
    Suo, Zhigang
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (07)
  • [24] Photo-accelerated fast charging of lithium-ion batteries
    Lee, Anna
    Voros, Marton
    Dose, Wesley M.
    Niklas, Jens
    Poluektov, Oleg
    Schaller, Richard D.
    Iddir, Hakim
    Maroni, Victor A.
    Lee, Eungje
    Ingram, Brian
    Curtiss, Larry A.
    Johnson, Christopher S.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [25] Direct venting during fast charging of lithium-ion batteries
    Li, Yalun
    Gao, Xinlei
    Wang, Huizhi
    Offer, Gregory J.
    Yang, Shichun
    Zhao, Zhengming
    Ouyang, Minggao
    JOURNAL OF POWER SOURCES, 2024, 592
  • [26] Fast Charging of Lithium-ion Batteries via Electrode Engineering
    Vishnugopi, Bairav S.
    Verma, Ankit
    Mukherjee, Partha P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (09)
  • [27] Gradient porosity electrodes for fast charging lithium-ion batteries
    Yang, Jian
    Li, Yejing
    Mijailovic, Aleksandar
    Wang, Guanyi
    Xiong, Jie
    Mathew, Kevin
    Lu, Wenquan
    Sheldon, Brian W.
    Wu, Qingliu
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (22) : 12114 - 12124
  • [28] Phosphosilicate glass anode for fast charging lithium-ion batteries
    Su, Xunbo
    Li, Yacong
    Zhang, Jiayan
    Shan, Zhitao
    Zhang, Yanfei
    MATERIALS LETTERS, 2024, 354
  • [29] Photo-accelerated fast charging of lithium-ion batteries
    Anna Lee
    Márton Vörös
    Wesley M. Dose
    Jens Niklas
    Oleg Poluektov
    Richard D. Schaller
    Hakim Iddir
    Victor A. Maroni
    Eungje Lee
    Brian Ingram
    Larry A. Curtiss
    Christopher S. Johnson
    Nature Communications, 10
  • [30] Ester-Based Electrolytes for Fast Charging of Energy Dense Lithium-Ion Batteries
    Logan, E. R.
    Hall, D. S.
    Cormier, Marc M. E.
    Taskovic, T.
    Bauer, Michael
    Hamam, Ines
    Hebecker, Helena
    Molino, Laurent
    Dahn, J. R.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (23): : 12269 - 12280