Attention-Aware Pseudo-3-D Convolutional Neural Network for Hyperspectral Image Classification

被引:21
|
作者
Lin, Jianzhe [1 ]
Mou, Lichao [2 ,3 ]
Zhu, Xiao Xiang [2 ,3 ]
Ji, Xiangyang [4 ]
Wang, Z. Jane [1 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
[2] Tech Univ Munich, Signal Proc Earth Observat, D-80333 Munich, Germany
[3] German Aerosp Ctr, Remote Sensing Technol, D-82234 Wessling, Germany
[4] Tsinghua Univ, Dept Elect & Engn, Beijing 100084, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Feature extraction; Solid modeling; Pipelines; Hyperspectral imaging; Convolution; Task analysis; Neural networks; Hyperspectral image; salient samples; supervised classification; transfer learning;
D O I
10.1109/TGRS.2020.3038212
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Convolutional neural networks (CNNs) have been applied for hyperspectral image classification recently. Among this class of deep models, 3-D CNN has been shown to be more effective by learning discriminative features from abundant spectral signatures and spatial contexts in hyperspectral imagery (HSI). However, by simply imposing 3-D CNN to HSI, a large amount of initial information might be lost in this CNN pipeline. The proposed attention-aware pseudo-3-D (AP3D) convolutional network for HSI classification is motivated by two observations. First, each dimension of the 3-D HSI is not equally important, different attention should be paid to different dimensions of the initial HSI image, especially in the first convolution operation. Second, intermediate representations of the 3-D input image at different stages in the 3-D CNN pipeline represent different levels of features and should not be neglected and abandoned. Instead, a 2-D matrix of scores for each feature map should be fed to the final softmax layer. Quantitative and qualitative results demonstrate that the proposed AP3D model outperforms the state-of-the-art HSI classification methods in agricultural and rural/urban data sets: Indian Pines, Pavia University, and Salinas Scene.
引用
收藏
页码:7790 / 7802
页数:13
相关论文
共 50 条
  • [31] A Novel Cubic Convolutional Neural Network for Hyperspectral Image Classification
    Wang, Jinwei
    Song, Xiangbo
    Sun, Le
    Huang, Wei
    Wang, Jin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 4133 - 4148
  • [32] Hyperspectral Image Classification With Convolutional Neural Network and Active Learning
    Cao, Xiangyong
    Yao, Jing
    Xu, Zongben
    Meng, Deyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 4604 - 4616
  • [33] Adaptive Residual Convolutional Neural Network for Hyperspectral Image Classification
    Huang, Hong
    Pu, Chunyu
    Li, Yuan
    Duan, Yule
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 2520 - 2531
  • [34] Hyperspectral Image Classification Using Modified Convolutional Neural Network
    Kalita, Shashanka
    Biswas, Mantosh
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 1884 - 1889
  • [35] CONVOLUTIONAL NEURAL NETWORK FOR COASTAL WETLAND CLASSIFICATION IN HYPERSPECTRAL IMAGE
    Liu, Chang
    Zhang, Mengmeng
    Li, Wei
    Sun, Weiwei
    Tao, Ran
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 5104 - 5107
  • [36] A Lightweight Hybrid Convolutional Neural Network for Hyperspectral Image Classification
    Ma, Xiaohu
    Kang, Xudong
    Qin, Huawei
    Wang, Wuli
    Ren, Guangbo
    Wang, Jianbu
    Liu, Baodi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [37] Morphologically dilated convolutional neural network for hyperspectral image classification
    Kumar, Vinod
    Singh, Ravi Shankar
    Dua, Yaman
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2022, 101
  • [38] A Convolutional Neural Network With Mapping Layers for Hyperspectral Image Classification
    Li, Rui
    Pan, Zhibin
    Wang, Yang
    Wang, Ping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3136 - 3147
  • [39] Recurrent Feedback Convolutional Neural Network for Hyperspectral Image Classification
    Li, Heng-Chao
    Li, Shuang-Shuang
    Hu, Wen-Shuai
    Feng, Jun-Huan
    Sun, Wei-Wei
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [40] A Lightweight Conditional Convolutional Neural Network for Hyperspectral Image Classification
    Wu, Linfeng
    Wang, Huajun
    Wang, Huiqing
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2023, 89 (07): : 413 - 423