UCT: Learning Unified Convolutional Networks for Real-time Visual Tracking

被引:68
|
作者
Zhu, Zheng [1 ,2 ]
Huang, Guan [3 ]
Zou, Wei [1 ,2 ]
Du, Dalong [3 ]
Huang, Chang [3 ]
机构
[1] Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Horizon Robot Inc, Beijing, Peoples R China
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
OBJECT TRACKING;
D O I
10.1109/ICCVW.2017.231
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional neural networks (CNN) based tracking approaches have shown favorable performance in recent benchmarks. Nonetheless, the chosen CNN features are always pre-trained in different task and individual components in tracking systems are learned separately, thus the achieved tracking performance may be suboptimal. Besides, most of these trackers are not designed towards realtime applications because of their time-consuming feature extraction and complex optimization details. In this paper, we propose an end-to-end framework to learn the convolutional features and perform the tracking process simultaneously, namely, a unified convolutional tracker (UCT). Specifically, The UCT treats feature extractor and tracking process (ridge regression) both as convolution operation and trains them jointly, enabling learned CNN features are tightly coupled to tracking process. In online tracking, an efficient updating method is proposed by introducing peak-versus-noise ratio (PNR) criterion, and scale changes are handled efficiently by incorporating a scale branch into network. The proposed approach results in superior tracking performance, while maintaining real-time speed. The standard UCT and UCT-Lite can track generic objects at 41 FPS and 154 FPS without further optimization, respectively. Experiments are performed on four challenging benchmark tracking datasets: OTB2013, OTB2015, VOT2014 and VOT2015, and our method achieves state-ofthe-art results on these benchmarks compared with other real-time trackers.
引用
收藏
页码:1973 / 1982
页数:10
相关论文
共 50 条
  • [31] Joint Representation Learning with Deep Quadruplet Network for Real-Time Visual Tracking
    Zhang, Dawei
    Zheng, Zhonglong
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [32] Multi-Task Hierarchical Feature Learning for Real-Time Visual Tracking
    Kuai, Yangliu
    Wen, Gongjian
    Li, Dongdong
    IEEE SENSORS JOURNAL, 2019, 19 (05) : 1961 - 1968
  • [33] Real-time visual tracking via online weighted multiple instance learning
    Zhang, Kaihua
    Song, Huihui
    PATTERN RECOGNITION, 2013, 46 (01) : 397 - 411
  • [34] LIGHTWEIGHT DEEP NEURAL NETWORK FOR REAL-TIME VISUAL TRACKING WITH MUTUAL LEARNING
    Zhao, Haojie
    Yang, Gang
    Wang, Dong
    Lu, Huchuan
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 3063 - 3067
  • [35] Deep Meta Learning for Real-Time Target-Aware Visual Tracking
    Choi, Janghoon
    Kwon, Junseok
    Lee, Kyoung Mu
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 911 - 920
  • [36] MULTI-TASK OCCLUSION LEARNING FOR REAL-TIME VISUAL OBJECT TRACKING
    Sahin, Gozde
    Itti, Laurent
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 524 - 528
  • [37] Real-Time Traffic Classification for Unified Communication Networks
    Elnaka, Abdelwahab M.
    Mahmoud, Qusay H.
    2013 INTERNATIONAL CONFERENCE ON SELECTED TOPICS IN MOBILE AND WIRELESS NETWORKING (MOWNET), 2013, : 1 - 6
  • [38] Real-Time Object Detection and Tracking for Unmanned Aerial Vehicles Based on Convolutional Neural Networks
    Yang, Shao-Yu
    Cheng, Hsu-Yung
    Yu, Chih-Chang
    ELECTRONICS, 2023, 12 (24)
  • [39] Deep Convolutional Neural Networks for Real-Time Human Detection and Tracking on UAVs Embedded Systems
    Serghei, Trandafir-Liviu
    Parvu, Petrisor Valentin
    Serghei, Madalina-Oana
    Popescu, Dan
    Ichim, Loretta
    2023 31ST MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, MED, 2023, : 311 - 316
  • [40] Real-Time Hair Filtering with Convolutional Neural Networks
    Currius, Roc R.
    Assarsson, Ulf
    Sintorn, Erik
    PROCEEDINGS OF THE ACM ON COMPUTER GRAPHICS AND INTERACTIVE TECHNIQUES, 2022, 5 (01)