Image-based Malware Classification: A Space Filling Curve Approach

被引:9
|
作者
O'Shaughnessy, Stephen [1 ]
机构
[1] Technol Univ Dublin, Dublin, Ireland
关键词
Space-filling curves; Morton curve; Z-order; malware classification; visualization; BINARY;
D O I
10.1109/vizsec48167.2019.9161583
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Anti-virus (AV) software is effective at distinguishing between benign and malicious programs yet lack the ability to effectively classify malware into their respective family classes. AV vendors receive considerably large volumes of malicious programs daily and so classification is crucial to quickly identify variants of existing malware that would otherwise have to be manually examined. This paper proposes a novel method of visualizing and classifying malware using Space-Filling Curves (SFC's) in order to improve the limitations of AV tools. The classification models produced were evaluated on previously unseen samples and showed promising results, with precision, recall and accuracy scores of 82%, 80% and 83% respectively. Furthermore, a comparative assessment with previous research and current AV technologies revealed that the method presented here was robust, outperforming most commercial and open-source AV scanner software programs.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Deep Convolution Neural Networks for Image-Based Android Malware Classification
    Ksibi, Amel
    Zakariah, Mohammed
    Almuqren, Latifah
    Alluhaidan, Ala Saleh
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (03): : 4093 - 4116
  • [12] IMCLNet: A lightweight deep neural network for Image-based Malware Classification
    Zou, Binghui
    Cao, Chunjie
    Tao, Fangjian
    Wang, Longjuan
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2022, 70
  • [13] Image-based detection and classification of Android malware through CNN models
    Aldini, Alessandro
    Petrelli, Tommaso
    19TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY, AND SECURITY, ARES 2024, 2024,
  • [14] Image-Based Malware Classification Using Multi-layer Perceptron
    Ouahab, Ikram Ben Abdel
    Elaachak, Lotfi
    Bouhorma, Mohammed
    NETWORKING, INTELLIGENT SYSTEMS AND SECURITY, 2022, 237 : 453 - 464
  • [15] Deriving Optimal Deep Learning Models for Image-based Malware Classification
    Mitsuhashi, Rikima
    Shinagawa, Takahiro
    37TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2022, : 1727 - 1729
  • [16] Deep Learning versus Gist Descriptors for Image-based Malware Classification
    Yajamanam, Sravani
    Selvin, Vikash Raja Samuel
    Di Troia, Fabio
    Stamp, Mark
    ICISSP: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, 2018, : 553 - 561
  • [17] Neural Network Innovations in Image-Based Malware Classification: A Comparative Study
    Al-Qadasi, Hamzah
    Benchadi, Djafer Yahia M.
    Chehida, Salim
    Fukui, Kazuhiro
    Bensalem, Saddek
    ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOL 4, AINA 2024, 2024, 202 : 252 - 265
  • [18] An Attention Mechanism for Combination of CNN and VAE for Image-Based Malware Classification
    Van Dao, Tuan
    Sato, Hiroshi
    Kubo, Masao
    IEEE ACCESS, 2022, 10 : 85127 - 85136
  • [19] Image-Based malware classification using ensemble of CNN architectures (IMCEC)
    Vasan, Danish
    Alazab, Mamoun
    Wassan, Sobia
    Safaei, Babak
    Zheng, Qin
    COMPUTERS & SECURITY, 2020, 92 (92)
  • [20] Broad learning: A GPU-free image-based malware classification
    Vasan, Danish
    Hammoudeh, Mohammad
    Alazab, Mamoun
    APPLIED SOFT COMPUTING, 2024, 154