Bayes pooling of visual phrases for object retrieval

被引:2
|
作者
Jiang, Wenhui [1 ]
Zhao, Zhicheng [1 ]
Su, Fei [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
关键词
Visual phrases; Unified framework; Bayes pooling; Burstiness; SIMILARITY;
D O I
10.1007/s11042-015-2939-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Object retrieval is still an open question. A promising approach is based on the matching of visual phrases. However, this routine is often corrupted by visual phrase burstiness, i.e., the repetitive occurrence of some certain visual phrases. Burstiness leads to over-counting the co-occurring visual patterns between two images, thus would deteriorate the accuracy of image similarity measurement. On the other hand, existing methods are incapable of capturing the complete geometric variation between images. In this paper, we propose a novel strategy to address the two problems. Firstly, we propose a unified framework for matching geometry-constrained visual phrases. This framework provides a possibility of combing the optimal geometry constraints to improve the validity of matched visual phrases. Secondly, we propose to address the problem of visual phrase burstiness from a probabilistic view. This approach effectively filters out the bursty visual phrases through explicitly modelling their distribution. Experiments on five benchmark datasets demonstrate that our method outperforms other approaches consistently and significantly.
引用
收藏
页码:9095 / 9119
页数:25
相关论文
共 50 条
  • [11] EVALUATION OF VISUAL OBJECT RETRIEVAL DATASETS
    Zhu, Cai-Zhi
    Satoh, Shin'ichi
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3954 - 3958
  • [12] Image retrieval of sub-region visual phrases with sparse coding
    Wang, Ruixia
    Peng, Guohua
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2015, 33 (05): : 721 - 726
  • [13] Extraction of Robust Visual Phrases Using Graph Mining for Image Retrieval
    Yeh, Jun-Bin
    Wu, Chung-Hsien
    2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 3681 - 3684
  • [14] SPPT: Siamese Pyramid Pooling Transformer for Visual Object Tracking
    Fang, Yang
    Xie, Bailian
    Jiang, Bingbing
    Ke, Xuhui
    Li, Yan
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2023, 13
  • [15] Axiom -: A modular visual object retrieval system
    Wickel, J
    Alvarado, P
    Dörfler, P
    Krüger, T
    Kraiss, KF
    KI2002: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2002, 2479 : 253 - 267
  • [16] Visual information quantification for object recognition and retrieval
    CHENG JiaLiang
    BIE Lin
    ZHAO XiBin
    GAO Yue
    Science China(Technological Sciences), 2021, (12) : 2618 - 2626
  • [17] Relevance of Useful Visual Words in Object Retrieval
    Qi, Siyuan
    Luo, Yupin
    FIFTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2013), 2013, 8878
  • [18] Spatial Keypoint Representation for Visual Object Retrieval
    Nowak, Tomasz
    Najgebauer, Patryk
    Romanowski, Jakub
    Gabryel, Marcin
    Korytkowski, Marcin
    Scherer, Rafal
    Kostadinov, Dimce
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2014, PT II, 2014, 8468 : 639 - 650
  • [19] Visual information quantification for object recognition and retrieval
    JiaLiang Cheng
    Lin Bie
    XiBin Zhao
    Yue Gao
    Science China Technological Sciences, 2021, 64 : 2618 - 2626
  • [20] Object Retrieval Using Visual Query Context
    Yang, Linjun
    Geng, Bo
    Cai, Yang
    Hanjalic, Alan
    Hua, Xian-Sheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2011, 13 (06) : 1295 - 1307