Sales Prediction based on Machine Learning

被引:1
|
作者
Huo, Zixuan [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Int Sch, Beijing, Peoples R China
关键词
Sales Prediction; Regression; Machine Learning; Deep Learning;
D O I
10.1109/ECIT52743.2021.00093
中图分类号
F [经济];
学科分类号
02 ;
摘要
With the increasing influence of the Internet on people's life, the development of e-commerce platforms is more rapid, with users and earnings of these platforms showing a growing trend. In recent years, the strong support of national policies has also provided a good environment for the development of the e-commerce industry. Under the impact of the epidemic this year, the role of the e-commerce industry in the development of the national economy has become more prominent. In such cases, the number and the competitiveness of e-commerce platforms and e-commerce enterprises are increasing. If a platform wants to maintain its advantage in the competition, it must be able to better meet the needs of users, and do a good job in all aspects of coordination and management. At this point, the accurate forecast of the sales volume of e-commerce platforms is particularly important. At present, there are many studies on e-commerce sales prediction, but we are still exploring the prediction model that can be better applied in different scenarios. In this paper, we try and evaluate two linear models, three machine learning models and two deep learning models, finding that machine learning and deep learning models have no advantage in improving the accuracy of sales forecast, but on a predictive basis, models perform better when they include information on calendar and price.
引用
收藏
页码:410 / 415
页数:6
相关论文
共 50 条
  • [31] An investigation of machine learning based prediction systems
    Mair, C
    Kadoda, G
    Lefley, M
    Phalp, K
    Schofield, C
    Shepperd, M
    Webster, S
    JOURNAL OF SYSTEMS AND SOFTWARE, 2000, 53 (01) : 23 - 29
  • [32] Clash Relevance Prediction Based on Machine Learning
    Hu, Yuqing
    Castro-Lacouture, Daniel
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2019, 33 (02)
  • [33] FLIGHT DELAY PREDICTION BASED WITH MACHINE LEARNING
    Hatipoglu, Irmak
    Tosun, Omur
    Tosun, Nedret
    LOGFORUM, 2022, 18 (01) : 96 - 107
  • [34] Lost circulation prediction based on machine learning
    Pang, Huiwen
    Meng, Han
    Wang, Hanqing
    Fan, Yongdong
    Nie, Zhen
    Jin, Yan
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [35] Visibility Prediction Based on Machine Learning Algorithms
    Zhang, Yu
    Wang, Yangjun
    Zhu, Yinqian
    Yang, Lizhi
    Ge, Lin
    Luo, Chun
    ATMOSPHERE, 2022, 13 (07)
  • [36] A Stratigraphic Prediction Method Based on Machine Learning
    Zhou, Cuiying
    Ouyang, Jinwu
    Ming, Weihua
    Zhang, Guohao
    Du, Zichun
    Liu, Zhen
    APPLIED SCIENCES-BASEL, 2019, 9 (17):
  • [37] Machine learning based energy demand prediction
    Kamoona, Ammar
    Song, Hui
    Keshavarzian, Kian
    Levy, Kedem
    Jalili, Mahdi
    Wilkinson, Richardt
    Yu, Xinghuo
    McGrath, Brendan
    Meegahapola, Lasantha
    ENERGY REPORTS, 2023, 9 : 171 - 176
  • [38] Machine Learning Based Prediction of Ditching Loads
    Schwarz, Henning
    Ueberrueck, Micha
    Zemke, Jens-Peter M.
    Rung, Thomas
    AIAA JOURNAL, 2024,
  • [39] Machine learning based cardiovascular disease prediction
    Chinnasamy, P.
    Kumar, S. Arun
    Navya, V
    Priya, K. Lakshmi
    Boddu, Siva Sruthi
    MATERIALS TODAY-PROCEEDINGS, 2022, 64 : 459 - 463
  • [40] Lung Cancer Prediction Based on Learning Machine
    Wang, Ying
    2023 IEEE International Conference on Image Processing and Computer Applications, ICIPCA 2023, 2023, : 247 - 251