Sybil Attacks and Defense on Differential Privacy based Federated Learning

被引:0
|
作者
Jiang, Yupeng [1 ]
Li, Yong [2 ]
Zhou, Yipeng [1 ]
Zheng, Xi [1 ]
机构
[1] Macquarie Univ, Sydney, NSW, Australia
[2] Changchun Univ Technol, Changchun, Jilin, Peoples R China
基金
澳大利亚研究理事会;
关键词
Federated learning; differential privacy; Sybil attack;
D O I
10.1109/TRUSTCOM53373.2021.00062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In federated learning, machine learning and deep learning models are trained globally on distributed devices. The state-of-the-art privacy-preserving technique in the context of federated learning is user-level differential privacy. However, such a mechanism is vulnerable to some specific model poisoning attacks such as Sybil attacks. A malicious adversary could create multiple fake clients or collude compromised devices in Sybil attacks to mount direct model updates manipulation. Recent works on novel defense against model poisoning attacks are difficult to detect Sybil attacks when differential privacy is utilized, as it masks clients' model updates with perturbation. In this work, we implement the first Sybil attacks on differential privacy based federated learning architectures and show their impacts on model convergence. We randomly compromise some clients by manipulating different noise levels reflected by the local privacy budget epsilon of differential privacy with Laplace mechanism on the local model updates of these Sybil clients. As a result, the global model convergence rates decrease or even leads to divergence. We apply our attacks to two recent aggregation defense mechanisms, called Krum and Trimmed Mean. Our evaluation results on the MNIST and CIFAR-10 datasets show that our attacks effectively slow down the convergence of the global models. We then propose a method to keep monitoring the average loss of all participants in each round for convergence anomaly detection and defend our Sybil attacks based on the training loss reported from randomly selected sets of clients as the judging panels. Our empirical study demonstrates that our defense effectively mitigates the impact of our Sybil attacks.
引用
收藏
页码:355 / 362
页数:8
相关论文
共 50 条
  • [21] A Selective Defense Strategy for Federated Learning Against Attacks
    Chen Z.
    Jiang H.
    Zhou Y.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2024, 46 (03): : 1119 - 1127
  • [22] Prevention of GAN-Based Privacy Inferring Attacks Towards Federated Learning
    Cao, Hongbo
    Zhu, Yongsheng
    Ren, Yuange
    Wang, Bin
    Hu, Mingqing
    Wang, Wanqi
    Wang, Wei
    COLLABORATIVE COMPUTING: NETWORKING, APPLICATIONS AND WORKSHARING, COLLABORATECOM 2022, PT II, 2022, 461 : 39 - 54
  • [23] A secure and privacy preserved infrastructure for VANETs based on federated learning with local differential privacy
    Batool, Hajira
    Anjum, Adeel
    Khan, Abid
    Izzo, Stefano
    Mazzocca, Carlo
    Jeon, Gwanggil
    INFORMATION SCIENCES, 2024, 652
  • [24] Privacy-Preserving Federated Learning based on Differential Privacy and Momentum Gradient Descent
    Weng, Shangyin
    Zhang, Lei
    Feng, Daquan
    Feng, Chenyuan
    Wang, Ruiyu
    Klaine, Paulo Valente
    Imran, Muhammad Ali
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [25] A secure and privacy preserved infrastructure for VANETs based on federated learning with local differential privacy
    Batool, Hajira
    Anjum, Adeel
    Khan, Abid
    Izzo, Stefano
    Mazzocca, Carlo
    Jeon, Gwanggil
    Information Sciences, 2024, 652
  • [26] Evaluating Differential Privacy in Federated Continual Learning
    Ouyang, Junyan
    Han, Rui
    Liu, Chi Harold
    2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL, 2023,
  • [27] Vertically Federated Learning with Correlated Differential Privacy
    Zhao, Jianzhe
    Wang, Jiayi
    Li, Zhaocheng
    Yuan, Weiting
    Matwin, Stan
    ELECTRONICS, 2022, 11 (23)
  • [28] Decentralized Wireless Federated Learning With Differential Privacy
    Chen, Shuzhen
    Yu, Dongxiao
    Zou, Yifei
    Yu, Jiguo
    Cheng, Xiuzhen
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (09) : 6273 - 6282
  • [29] Enhancing Differential Privacy for Federated Learning at Scale
    Baek, Chunghun
    Kim, Sungwook
    Nam, Dongkyun
    Park, Jihoon
    IEEE ACCESS, 2021, 9 : 148090 - 148103
  • [30] Differential Privacy Federated Learning: A Comprehensive Review
    Shan, Fangfang
    Mao, Shiqi
    Lu, Yanlong
    Li, Shuaifeng
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (07) : 220 - 230