Phase-Plane Analysis of FRW Cosmological Model with Variable A in Lyra Geometry

被引:0
|
作者
Raushan, Rakesh [1 ]
Chaubey, R. [1 ]
机构
[1] Banaras Hindu Univ, Ctr Interdisciplinary Math Sci, Inst Sci, Varanasi, Uttar Pradesh, India
来源
GRAVITATION & COSMOLOGY | 2022年 / 28卷 / 02期
关键词
CONSTANT; GRAVITATION; STATEFINDER; DECAY;
D O I
10.1134/S0202289322020128
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The present work deals with the dynamical evolution of Friedmann-Robertson-Walker (FRW) Cosmologies with variable A in Lyra geometry. We perform phase-plane analysis of the model with a time-dependent displacement vector, considering a variable A, i.e., A proportional to beta(2) for model I and A proportional to H-3 for model II. To analyze the evolution equations, we introduce a suitable transformation of variables. The results are presented by curves in the phase-plane diagram. The nature of critical points is analyzed, and stable attractors are examined for both cosmological models. We determine the classical stability of these cosmologies. We also examine the transition of an early decelerated stage of the Universe to the present accelerated stage for both models.
引用
收藏
页码:166 / 174
页数:9
相关论文
共 50 条
  • [31] Mesonic Cosmological Model with Two-Fluid Source In Lyra Geometry
    D. D. Pawar
    V. J. Dagwal
    Y. S. Solanke
    International Journal of Theoretical Physics, 2015, 54 : 1926 - 1937
  • [32] A Class of higher dimensional spherically symmetric cosmological model in Lyra geometry
    F. Rahaman
    N. Begum
    S. Das
    Astrophysics and Space Science, 2004, 294 : 219 - 224
  • [33] Mesonic Cosmological Model with Two-Fluid Source In Lyra Geometry
    Pawar, D. D.
    Dagwal, V. J.
    Solanke, Y. S.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (06) : 1926 - 1937
  • [34] Kantowski–Sachs Cosmological Model with Anisotropic Dark Energy in Lyra Geometry
    Shri Ram
    S. Chandel
    M. K. Verma
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2020, 90 : 109 - 114
  • [35] Applications of phase-plane analysis to thyristor modelling
    Paisana, Julio
    Santos, H. Abreu
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2007, 26 (04) : 1134 - 1141
  • [36] A PHASE-PLANE ANALYSIS OF STABILITY IN TRANSIENT STATES
    OKUDA, M
    PROGRESS OF THEORETICAL PHYSICS, 1982, 68 (01): : 37 - 48
  • [37] A phase-plane analysis of localized frictional waves
    Putelat, T.
    Dawes, J. H. P.
    Champneys, A. R.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2203):
  • [38] New Class of Magnetized Inhomogeneous Bianchi Type-I Cosmological Model with Variable Magnetic Permeability in Lyra Geometry
    Ali, Ahmad T.
    Rahaman, F.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (11) : 4055 - 4067
  • [39] New Class of Magnetized Inhomogeneous Bianchi Type-I Cosmological Model with Variable Magnetic Permeability in Lyra Geometry
    Ahmad T. Ali
    F. Rahaman
    International Journal of Theoretical Physics, 2013, 52 : 4055 - 4067
  • [40] Bianchi Type V Barotropic Perfect Fluid Cosmological Model in Lyra Geometry
    Bali, Raj
    Chandnani, Naresh K.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (05) : 1523 - 1533