Fluctuations and Stochastic Processes in One-Dimensional Many-Body Quantum Systems

被引:37
|
作者
Stimming, H. -P. [1 ]
Mauser, N. J. [1 ]
Schmiedmayer, J. [2 ]
Mazets, I. E. [1 ,2 ,3 ]
机构
[1] Univ Vienna, Wolfgang Pauli Inst, A-1090 Vienna, Austria
[2] TU Wien, Atominst, A-1020 Vienna, Austria
[3] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
基金
奥地利科学基金会;
关键词
GASES; NOISE; INTERFERENCE; FERMIONS;
D O I
10.1103/PhysRevLett.105.015301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the fluctuation properties of a one-dimensional many-body quantum system composed of interacting bosons and investigate the regimes where quantum noise or, respectively, thermal excitations are dominant. For the latter, we develop a semiclassical description of the fluctuation properties based on the Ornstein-Uhlenbeck stochastic process. As an illustration, we analyze the phase correlation functions and the full statistical distributions of the interference between two one-dimensional systems, either independent or tunnel-coupled, and compare with the Luttinger-liquid theory.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Quantum corrections to the classical field approximation for one-dimensional quantum many-body systems in equilibrium
    Bastianello, Alvise
    Arzamasovs, Maksims
    Gangardt, Dimitri M.
    PHYSICAL REVIEW B, 2020, 101 (24)
  • [22] One-dimensional many-body entangled open quantum systems with tensor network methods
    Jaschke, Daniel
    Montangero, Simone
    Carr, Lincoln D.
    QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (01)
  • [23] Theory of the Many-Body Localization Transition in One-Dimensional Systems
    Vosk, Ronen
    Huse, David A.
    Altman, Ehud
    PHYSICAL REVIEW X, 2015, 5 (03):
  • [24] Universal Tripartite Entanglement in One-Dimensional Many-Body Systems
    Zou, Yijian
    Siva, Karthik
    Soejima, Tomohiro
    Mong, Roger S. K.
    Zaletel, Michael P.
    PHYSICAL REVIEW LETTERS, 2021, 126 (12)
  • [25] Coupling Identical one-dimensional Many-Body Localized Systems
    Bordia, Pranjal
    Luschen, Henrik P.
    Hodgman, Sean S.
    Schreiber, Michael
    Bloch, Immanuel
    Schneider, Ulrich
    PHYSICAL REVIEW LETTERS, 2016, 116 (14)
  • [26] A MODEL FOR CLUSTER CONFINEMENT IN ONE-DIMENSIONAL MANY-BODY SYSTEMS
    ALBERICO, WM
    BARBARO, MB
    MOLINARI, A
    PALUMBO, F
    ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1992, 341 (03): : 327 - 337
  • [27] Comment on "Solution of classical stochastic one-dimensional many-body systems" - Bares and Mobilia reply
    Bares, PA
    Mobilia, M
    PHYSICAL REVIEW LETTERS, 2000, 85 (04) : 893 - 893
  • [28] Quantum many-body scar models in one-dimensional spin chains
    Wang, Jia-Wei
    Zhou, Xiang -Fa
    Guo, Guang-Can
    Zhou, Zheng-Wei
    PHYSICAL REVIEW B, 2024, 109 (12)
  • [29] MANY-BODY FUNCTIONS OF A ONE-DIMENSIONAL GAS
    BAXTER, RJ
    PHYSICS OF FLUIDS, 1964, 7 (01) : 38 - 43
  • [30] Energy-twisted boundary condition and response in one-dimensional quantum many-body systems
    Nakai, Ryota
    Guo, Taozhi
    Ryu, Shinsei
    PHYSICAL REVIEW B, 2022, 106 (15)