Super-Resolution for Iris Feature Extraction

被引:0
|
作者
Deshpande, Anand [1 ]
Patavardhan, Prashant P. [1 ]
Rao, D. H. [2 ]
机构
[1] Gogte Inst Technol, Dept Elect & Commun Engn, Belgaum, India
[2] Visvesvaraya Technol Univ, Dept PG Studies, Belgaum, India
关键词
Super-resolution; Iris; Papoulis-Gerchberg; Projection onto Convex Sets; GLCM;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Super-resolution technique can be used to fix the low resolution problem for recognizing the iris at a distance. Two frequency domain super-resolution algorithms, Papoulis-Gerchberg (PG) and Projection onto Convex Sets, are implemented to increase the resolution of iris images. The performance analysis of these algorithms is carried out by extracting Gray Level Co-occurrenceMatrix (GLCM) features of super-resoluted iris images. The super-resoluted iris region is normalized, extracted GLCM features and compared with the GLCM features of normalized original iris region. It has been observed that the GLCM features reconstructed images using above algorithm closely matches with that of original iris image. The error between the GLCM features of original normalized and normalized super-resoluted image using Papoulis-Gerchberg is less compared to that of Projection onto Convex Sets.
引用
收藏
页码:1123 / 1126
页数:4
相关论文
共 50 条
  • [41] MFEN: Lightweight multi-scale feature extraction super-resolution network in embedded system
    Xiao, Hang
    Qin, Jiayi
    Jeon, Seunggil
    Yan, Binyu
    Yang, Xiaomin
    MICROPROCESSORS AND MICROSYSTEMS, 2022, 93
  • [42] An efficient and lightweight image super-resolution with feature network
    Zang, Yongsheng
    Zhou, Dongming
    Wang, Changcheng
    Nie, Rencan
    Guo, Yanbu
    OPTIK, 2022, 255
  • [43] Residual Feature Aggregation Network for Image Super-Resolution
    Liu, Jie
    Zhang, Wenjie
    Tang, Yuting
    Tang, Jie
    Wu, Gangshan
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2356 - 2365
  • [44] Residual Local Feature Network for Efficient Super-Resolution
    Kong, Fangyuan
    Li, Mingxi
    Liu, Songwei
    Liu, Ding
    He, Jingwen
    Bai, Yang
    Chen, Fangmin
    Fu, Lean
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 765 - 775
  • [45] Feature Preserving and Enhancing Network for Image Super-Resolution
    Su, Minglan
    Li, Xinchi
    Xu, Jiaoyang
    Yang, Mingchuan
    Zhang, Chaoying
    IEEE ACCESS, 2023, 11 : 132867 - 132877
  • [46] Recurrent feature supplementation network for video super-resolution
    Li, Guo-Fang
    Zhu, Yong-Gui
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2024, 47 (07) : 888 - 900
  • [47] Deeply Feature Fused Video Super-resolution Network
    Yang, Jingmin
    Chen, Zhensen
    Xu, Li
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2021, : 161 - 164
  • [48] A super-resolution reconstruction algorithm based on feature fusion
    Wang, Lin
    Yang, Siqi
    Jia, Jingqian
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 3060 - 3065
  • [49] Residual trio feature network for efficient super-resolution
    Chen, Junfeng
    Mao, Mao
    Guan, Azhu
    Ayush, Altangerel
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (01)
  • [50] Recurrent Feature Updating Network for Video Super-Resolution
    Li, Guofang
    Zhu, Yonggui
    IEEE ACCESS, 2023, 11 : 103476 - 103485