Exact traveling wave solutions to higher order nonlinear equations (vol 4, pg 276, 2019)

被引:0
|
作者
Ali, Khalid K.
Hadhoud, A. R.
Shaalan, M. A.
机构
关键词
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
引用
收藏
页码:102 / 102
页数:1
相关论文
共 50 条
  • [41] Nonlinear Dynamics and Exact Traveling Wave Solutions of the Higher-Order Nonlinear Schrodinger Equation with Derivative Non-Kerr Nonlinear Terms
    Wang, Heng
    Chen, Longwei
    Liu, Hongjiang
    Zheng, Shuhua
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [42] A new method for finding exact traveling wave solutions to nonlinear partial differential equations
    Hu, JL
    Zhang, HL
    PHYSICS LETTERS A, 2001, 286 (2-3) : 175 - 179
  • [43] Exact traveling wave solutions of some nonlinear physical models.I.The fifth order KdV type equations
    Jianlan HU
    X FENG and Zhi LIDepartment of Applied Mathematics Beijing Polytechnic University Beijing ChinaCenter for Space Plasma and Aeronomic Research Department of Mechanical and Aerospace Engineering University of Alabama in Huntsville
    Communications in Nonlinear Science & Numerical Simulation, 2000, (03) : 118 - 124
  • [44] Different forms for exact traveling wave solutions of unstable and hyperbolic nonlinear Schrodinger equations
    Sherriffe, Delmar
    Behera, Diptiranjan
    Nagarani, P.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2024, 38 (09):
  • [45] Exact and numerical traveling wave solutions for nonlinear coupled equations using symbolic computation
    Kaya, D
    Inan, IE
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 151 (03) : 775 - 787
  • [46] EXACT TRAVELING WAVE SOLUTIONS OF A CLASS OF NONLINEAR DIFFUSION-EQUATIONS BY REDUCTION TO A QUADRATURE
    OTWINOWSKI, M
    PAUL, R
    LAIDLAW, WG
    PHYSICS LETTERS A, 1988, 128 (09) : 483 - 487
  • [47] Traveling wave solutions for nonlinear Schrodinger equations
    Najafi, Mohammad
    Arbabi, Somayeh
    OPTIK, 2015, 126 (23): : 3992 - 3997
  • [48] Traveling solitary wave solutions to evolution equations with nonlinear terms of any order
    Feng, ZS
    CHAOS SOLITONS & FRACTALS, 2003, 17 (05) : 861 - 868
  • [49] Exact traveling wave solutions to the nonlinear Schrodinger equation
    Abdoulkary, Saidou
    Mohamadou, Alidou
    Beda, Tibi
    Gambo, Betchewe
    Doka, Serge Y.
    Alim
    Mahamoudou, Aboubakar
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 : 109 - 115
  • [50] Exact travelling wave solutions to some fifth order dispersive nonlinear wave equations
    Hu, JL
    CHINESE PHYSICS, 2005, 14 (03): : 455 - 459