Primal-Dual Optimization for Fluids

被引:23
|
作者
Inglis, T. [1 ]
Eckert, M. -L. [1 ]
Gregson, J. [2 ]
Thuerey, N. [1 ]
机构
[1] Tech Univ Munich, Munich, Germany
[2] Univ British Columbia, Vancouver, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
physically-based animation; fluid simulation; convex optimization; fluid guiding; flexible boundary conditions; SMOKE ANIMATION;
D O I
10.1111/cgf.13084
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We apply a novel optimization scheme from the image processing and machine learning areas, a fast Primal-Dual method, to achieve controllable and realistic fluid simulations. While our method is generally applicable to many problems in fluid simulations, we focus on the two topics of fluid guiding and separating solid-wall boundary conditions. Each problem is posed as an optimization problem and solved using our method, which contains acceleration schemes tailored to each problem. In fluid guiding, we are interested in partially guiding fluid motion to exert control while preserving fluid characteristics. With our method, we achieve explicit control over both large-scale motions and small-scale details which is valuable for many applications, such as level-of-detail adjustment (after running the coarse simulation), spatially varying guiding strength, domain modification, and resimulation with different fluid parameters. For the separating solid-wall boundary conditions problem, our method effectively eliminates unrealistic artefacts of fluid crawling up solid walls and sticking to ceilings, requiring few changes to existing implementations. We demonstrate the fast convergence of our Primal-Dual method with a variety of test cases for both model problems.
引用
收藏
页码:354 / 368
页数:15
相关论文
共 50 条
  • [31] A Primal-Dual SGD Algorithm for Distributed Nonconvex Optimization
    Yi, Xinlei
    Zhang, Shengjun
    Yang, Tao
    Chai, Tianyou
    Johansson, Karl Henrik
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (05) : 812 - 833
  • [32] Primal-dual exterior point method for convex optimization
    Polyak, Roman A.
    OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (01): : 141 - 160
  • [33] A PRIMAL-DUAL EXTERIOR POINT METHOD FOR NONLINEAR OPTIMIZATION
    Yamashita, Hiroshi
    Tanabe, Takahito
    SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (06) : 3335 - 3363
  • [34] Adaptive coordinate sampling for stochastic primal-dual optimization
    Liu, Huikang
    Wang, Xiaolu
    So, Anthony Man-Cho
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2022, 29 (01) : 24 - 47
  • [35] Primal-Dual Algorithm for Distributed Optimization with Coupled Constraints
    Gong, Kai
    Zhang, Liwei
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 201 (01) : 252 - 279
  • [36] ON PRIMAL-DUAL ALGORITHMS
    BELL, EJ
    JENNINGS, C
    COMMUNICATIONS OF THE ACM, 1966, 9 (09) : 653 - &
  • [37] Distributed Primal-Dual Methods for Online Constrained Optimization
    Lee, Soomin
    Zavlanos, Michael M.
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 7171 - 7176
  • [38] New Primal-Dual Proximal Algorithm for Distributed Optimization
    Latafat, Puya
    Stella, Lorenzo
    Patrinos, Panagiotis
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 1959 - 1964
  • [39] Primal-Dual Algorithm for Distributed Optimization with Coupled Constraints
    Kai Gong
    Liwei Zhang
    Journal of Optimization Theory and Applications, 2024, 201 : 252 - 279
  • [40] Macroscopic relationship in primal-dual portfolio optimization problem
    Shinzato, Takashi
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,