Drought modelling by standard precipitation index (SPI) in a semi-arid climate using deep learning method: long short-term memory

被引:37
|
作者
Gorgij, Alireza Docheshmeh [1 ]
Alizamir, Meysam [2 ]
Kisi, Ozgur [3 ]
Elshafie, Ahmed [4 ,5 ]
机构
[1] Univ Sistan & Baluchestan, Fac Ind & Min Khash, Zahedan, Iran
[2] Islamic Azad Univ, Dept Civil Engn, Hamedan Branch, Hamadan, Hamadan, Iran
[3] Ilia State Univ, Dept Civil Engn, GE-0162 Tbilisi, Georgia
[4] Univ Malaya, Fac Engn, Civil Engn Dept, Kuala Lumpur, Malaysia
[5] United Arab Emirates Univ, Natl Water Ctr, POB 15551, Al Ain, U Arab Emirates
来源
NEURAL COMPUTING & APPLICATIONS | 2022年 / 34卷 / 03期
关键词
Drought forecasting; Standard precipitation index; Deep learning; LSTM; Extra-trees; VAR; MARS; ARTIFICIAL-INTELLIGENCE MODELS; RIVER-BASIN; WAVELET TRANSFORMS; PREDICTION; FRAMEWORK;
D O I
10.1007/s00521-021-06505-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Drought modelling is an important issue because it is required for curbing or mitigating its effects, alerting the people to the its consequences, and water resources planning. This study investigates the capability of a deep learning method, long short-term memory (LSTM), in forecasting drought calculated from monthly rainfall data obtained from four stations of Iran. The outcomes of LSTM compared with extra-trees (ET), vector autoregressive approach (VAR) and multivariate adaptive regression spline (MARS) methods in forecasting four drought indices, SPI-3, SPI-6, SPI-9 and SPI-12, taking into account numerical criteria, root-mean-square errors (RMSE), Nash-Sutcliffe efficiency and correlation coefficient together with the visual methods, time variation graphs, scatter plots and Taylor diagrams. The overall results showed that the LSTM method performed superior to the ET, VAR and MARS in forecasting drought based on SPI-3, SPI-6, SPI-9 and SPI-12. The RMSE of ET, VAR and MARS was improved by about 17.1%, 12.8% and 9.6% for SPI-3, by 10.5%, 6.2% and 5% for SPI-6, by 7.3%, 4.1% and 6.2% for SPI-9 and by 22.2%, 27% and 10.6% for SPI-12 using LSTM. The MARS method was ranked as the second best, while the ET provided the worst results in forecasting drought based on SPI.
引用
收藏
页码:2425 / 2442
页数:18
相关论文
共 50 条
  • [21] Remaining Useful Life Estimation Using Long Short-Term Memory Deep Learning
    Hsu, Che-Sheng
    Jiang, Jehn-Ruey
    PROCEEDINGS OF 4TH IEEE INTERNATIONAL CONFERENCE ON APPLIED SYSTEM INNOVATION 2018 ( IEEE ICASI 2018 ), 2018, : 58 - 61
  • [22] Modelling bridge deterioration using long short-term memory neural networks: a deep learning-based approach
    Dabous, Saleh Abu
    Ibrahim, Fakhariya
    Alzghoul, Ahmad
    SMART AND SUSTAINABLE BUILT ENVIRONMENT, 2024,
  • [23] Predicting the Parameters of Vortex Bladeless Wind Turbine Using Deep Learning Method of Long Short-Term Memory
    Manshadi, Mahsa Dehghan
    Ghassemi, Majid
    Mousavi, Seyed Milad
    Mosavi, Amir H.
    Kovacs, Levente
    ENERGIES, 2021, 14 (16)
  • [24] Monthly climate prediction using deep convolutional neural network and long short-term memory
    Guo, Qingchun
    He, Zhenfang
    Wang, Zhaosheng
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [25] Deep Learning with Long Short-Term Memory for Time Series Prediction
    Hua, Yuxiu
    Zhao, Zhifeng
    Li, Rongpeng
    Chen, Xianfu
    Liu, Zhiming
    Zhang, Honggang
    IEEE COMMUNICATIONS MAGAZINE, 2019, 57 (06) : 114 - 119
  • [26] A long short-term memory deep learning framework for explainable recommendation
    Zarzour, Hafed
    Jararweh, Yaser
    Hammad, Mahmoud M.
    Al-Smadi, Mohammed
    2020 11TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2020, : 233 - 237
  • [27] Short-Term Traffic Prediction Using Deep Learning Long Short-Term Memory: Taxonomy, Applications, Challenges, and Future Trends
    Khan, Anwar
    Fouda, Mostafa M.
    Do, Dinh-Thuan
    Almaleh, Abdulaziz
    Rahman, Atiq Ur
    IEEE ACCESS, 2023, 11 : 94371 - 94391
  • [28] Long lead time drought forecasting using lagged climate variables and a stacked long short-term memory model
    Dikshit, Abhirup
    Pradhan, Biswajeet
    Alamri, Abdullah M.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 755 (755)
  • [29] A deep learning approach for stock market prediction using deep autoencoder and long short-term memory
    Rekha, K.S.
    Sabu, M.K.
    International Journal of Intelligent Systems Technologies and Applications, 2021, 20 (04) : 310 - 324
  • [30] Disturbance Storm Time Index Prediction using Long Short-Term Memory Machine Learning
    Wihayati
    Purnomo, Hindriyanto Dwi
    Trihandaru, Suryasatriya
    2021 4TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATICS ENGINEERING (IC2IE 2021), 2021, : 311 - 316