Self-Heating and Failure in Scalable Graphene Devices

被引:20
|
作者
Beechem, Thomas E. [1 ]
Shaffer, Ryan A. [1 ]
Nogan, John [1 ]
Ohta, Taisuke [1 ]
Hamilton, Allister B. [1 ]
McDonald, Anthony E. [1 ]
Howell, Stephen W. [1 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87123 USA
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
EPITAXIAL GRAPHENE; ELECTRICAL BREAKDOWN; GROWTH; DECOMPOSITION; MONOLAYER; OXIDATION; MOBILITY; OXYGEN; LAYERS;
D O I
10.1038/srep26457
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Self-heating induced failure of graphene devices synthesized from both chemical vapor deposition (CVD) and epitaxial means is compared using a combination of infrared thermography and Raman imaging. Despite a larger thermal resistance, CVD devices dissipate >3x the amount of power before failure than their epitaxial counterparts. The discrepancy arises due to morphological irregularities implicit to the graphene synthesis method that induce localized heating. Morphology, rather than thermal resistance, therefore dictates power handling limits in graphene devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Self-Heating and Failure in Scalable Graphene Devices
    Thomas E. Beechem
    Ryan A. Shaffer
    John Nogan
    Taisuke Ohta
    Allister B. Hamilton
    Anthony E. McDonald
    Stephen W. Howell
    Scientific Reports, 6
  • [2] Modeling Self-Heating in Nanoscale Devices
    Vasileska, Dragica
    2015 IEEE 15TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2015, : 200 - 203
  • [3] Self-Heating Effects in High Performance Devices
    Raleva, Katerina
    Vasileska, Dragica
    Goodnick, Stephen M.
    ICT INNOVATIONS 2010, 2011, 83 : 114 - +
  • [4] Analysis of the self-heating effect in UTBOX devices
    Rodrigues, M.
    Cruz, E. O.
    Galeti, M.
    Martino, J. A.
    MICROELECTRONICS TECHNOLOGY AND DEVICES - SBMICRO 2012, 2012, 49 (01): : 153 - 160
  • [5] Self-heating eeffects in SOINLDEMOS power devices
    Dieudonne, F.
    Haendler, S.
    Chouteau, S.
    Rosa, J.
    Waltz, P.
    Perrotin, A.
    Boissonnet, L.
    Rauber, B.
    Schaffnit, C.
    Raynaud, C.
    2006 25TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS, VOLS 1 AND 2, PROCEEDINGS, 2006, : 201 - +
  • [6] Reduction of self-heating effect on SOIM devices
    Roig, J
    Flores, D
    Vellvehi, M
    Rebollo, J
    Millan, J
    MICROELECTRONICS RELIABILITY, 2002, 42 (01) : 61 - 66
  • [7] SCALABLE SMALL-SIGNAL MODEL FOR BJT SELF-HEATING
    FOX, RM
    LEE, SG
    IEEE ELECTRON DEVICE LETTERS, 1991, 12 (12) : 649 - 651
  • [8] A Scalable Nonlinear Model for GaN HEMTs with Self-Heating Effect
    Li, Zhao
    Feng, Feng
    Li, Mengjie
    Wang, Xu
    Wang, Lulu
    Fang, Wenrao
    2022 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT), 2022,
  • [9] A Scalable Compact Model of Interconnects Self-Heating in CMOS Technology
    Manouvrier, Jean-Robert
    Fonteneau, Pascal
    Legrand, Charles-Alexandre
    Richier, Corinne
    Beckrich-Ros, Helene
    ELECTRICAL OVERSTRESS/ELECTROSTATIC DISCHARGE SYMPOSIUM PROCEEDINGS - 2008, 2008, : 88 - 93
  • [10] Thermal analysis of self-heating in saddle MOSFET devices
    Oh, Hyun Gon
    Jeong, Cherlhyun
    Cho, Il Hwan
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2014, 53 (02)