Planar Random Walk in a Stratified Quasi-periodic Environment

被引:0
|
作者
Bremont, Julien [1 ,2 ]
机构
[1] Univ Paris Est Creteil, CNRS, LAMA, F-94010 Creteil, France
[2] Univ Gustave Eiffel, LAMA, F-77447 Marne La Vallee, France
关键词
INVARIANT;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article investigates the question of the recurrence of a class of inhomogeneous Markov chains in the plane, assuming the environment invariant under horizontal translations. This type of random walks were first considered by Matheron and de Marsily [20] around 1980, with a motivation coming from hydrology and the modelization of pollutants diffusion in a porous and stratified ground. In 2003, a discrete version was introduced by Campanino and Petritis in [7]. As in [4-6], we consider an extension of the latter, restricting here to the plane and simplifying a little the hypotheses. We shall define a Markov chain (S-k) k >= 0 in Z(2), starting at the origin, such that the transition laws are constant on each stratum Z x {n}, n is an element of Z. The first and second coordinates will be respectively called \horizontal" and \vertical". For each (vertical) n is an element of Z, let positive reals alpha(n); beta(n); gamma(n), with alpha(n) + beta(n) + gamma(n) = 1, and a probability measure mu(n) so that:
引用
收藏
页码:755 / 788
页数:34
相关论文
共 50 条
  • [41] Quasi-periodic interpolation
    不详
    ARMENIAN JOURNAL OF MATHEMATICS, 2015, 7 (01): : 22 - 63
  • [42] Quasi-periodic undulator
    Hashimoto, S
    Sasaki, S
    FUTURE OF ACCELERATOR PHYSICS, 1996, (356): : 188 - 199
  • [43] QUASI-PERIODIC SUPERLATTICES
    ODAGAKI, T
    FRIEDMAN, L
    SOLID STATE COMMUNICATIONS, 1986, 57 (12) : 915 - 917
  • [44] ON QUASI-PERIODIC RINGS
    BELL, HE
    ARCHIV DER MATHEMATIK, 1981, 36 (06) : 502 - 509
  • [45] QUASI-PERIODIC FACTORIZATIONS
    Szabo, Sandor
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2006, 5 (06) : 793 - 797
  • [46] QUASI-PERIODIC OSCILLATIONS
    LEWIN, WHG
    IAU SYMPOSIA, 1987, (125): : 363 - 374
  • [47] QUASI-PERIODIC PATTERNS
    KATZ, A
    DUNEAU, M
    JOURNAL DE PHYSIQUE, 1985, 46 (C-8): : 31 - 40
  • [48] High directive antenna using quasi-periodic planar metamaterial substrates
    Li, HQ
    Hang, ZH
    Qin, YQ
    Zhou, L
    Zhang, YW
    Chen, H
    Chan, CT
    2005 IEEE International Workshop on Antenna Technology: Small Antennas Novel MetaMaterials, Proceedings, 2005, : 379 - 382
  • [49] Modal spectrum of planar dielectric waveguides with quasi-periodic side walls
    Mesa, F
    Medina, F
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (01) : 464 - 469
  • [50] QUASI-PERIODIC PULSARS
    MICHEL, FC
    PHYSICS TODAY, 1986, 39 (10) : 9 - 9