Nonnegative Matrix Factorization Via Archetypal Analysis

被引:7
|
作者
Javadi, Hamid [1 ]
Montanari, Andrea [2 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, POB 1892, Houston, TX 77005 USA
[2] Stanford Univ, Dept Elect Engn & Stat, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Dimensionality reduction; Matrix factorization; Separability; ALGORITHMS;
D O I
10.1080/01621459.2019.1594832
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given a collection of data points, nonnegative matrix factorization (NMF) suggests expressing them as convex combinations of a small set of "archetypes" with nonnegative entries. This decomposition is unique only if the true archetypes are nonnegative and sufficiently sparse (or the weights are sufficiently sparse), a regime that is captured by the separability condition and its generalizations. In this article, we study an approach to NMF that can be traced back to the work of Cutler and Breiman [(1994), "Archetypal Analysis," Technometrics, 36, 338-347] and does not require the data to be separable, while providing a generally unique decomposition. We optimize a trade-off between two objectives: we minimize the distance of the data points from the convex envelope of the archetypes (which can be interpreted as an empirical risk), while also minimizing the distance of the archetypes from the convex envelope of the data (which can be interpreted as a data-dependent regularization). The archetypal analysis method of Cutler and Breiman is recovered as the limiting case in which the last term is given infinite weight. We introduce a "uniqueness condition" on the data which is necessary for identifiability. We prove that, under uniqueness (plus additional regularity conditions on the geometry of the archetypes), our estimator is robust. While our approach requires solving a nonconvex optimization problem, we find that standard optimization methods succeed in finding good solutions for both real and synthetic data. for this article are available online
引用
收藏
页码:896 / 907
页数:12
相关论文
共 50 条
  • [31] SAR Target Recognition via Incremental Nonnegative Matrix Factorization
    Dang, Sihang
    Cui, Zongyong
    Cao, Zongjie
    Liu, Nengyuan
    REMOTE SENSING, 2018, 10 (03):
  • [32] Elastic nonnegative matrix factorization
    Xiong, He
    Kong, Deguang
    PATTERN RECOGNITION, 2019, 90 : 464 - 475
  • [33] Elastic Nonnegative Matrix Factorization
    Ballen, Peter
    Guha, Sudipto
    2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 1271 - 1278
  • [34] ON THE COMPLEXITY OF NONNEGATIVE MATRIX FACTORIZATION
    Vavasis, Stephen A.
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (03) : 1364 - 1377
  • [35] Image Analysis Based on Nonnegative/Binary Matrix Factorization
    Asaoka, Hinako
    Kudo, Kazue
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2020, 89 (08)
  • [36] WEIGHTED NONNEGATIVE MATRIX FACTORIZATION
    Kim, Yang-Deok
    Choi, Seungjin
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1541 - 1544
  • [37] Parallelism on the Nonnegative Matrix Factorization
    Mejia-Roa, Edgardo
    Garcia, Carlos
    Gomez, Jose-Ignacio
    Prieto, Manuel
    Tenllado, Christian
    Pascual-Montano, Alberto
    Tirado, Francisco
    APPLICATIONS, TOOLS AND TECHNIQUES ON THE ROAD TO EXASCALE COMPUTING, 2012, 22 : 421 - 428
  • [38] On Rationality of Nonnegative Matrix Factorization
    Chistikov, Dmitry
    Kiefer, Stefan
    Marusic, Ines
    Shirmohammadi, Mahsa
    Worrell, James
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 1290 - 1305
  • [39] On Identifiability of Nonnegative Matrix Factorization
    Fu, Xiao
    Huang, Kejun
    Sidiropoulos, Nicholas D.
    IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (03) : 328 - 332
  • [40] Nonnegative matrix and tensor factorization
    Cichocki, Andrzej
    Zdunek, Rafal
    Amari, Shun-Ichi
    IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) : 142 - 145