Existence of singular solutions of a degenerate equation in R2

被引:1
|
作者
Hsu, SY [1 ]
机构
[1] Natl Chung Cheng Univ, Dept Math, Chiayi 621, Taiwan
关键词
singular solution; degenerate equation; existence; blow-up rate; points of singularities;
D O I
10.1007/s00208-005-0714-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
6Let a(1), a(2),..., a(m) epsilon R-2, 2 <= f is an element of C([0,infinity)), g(i). is an element of C([0,infinity)) be such that 0 <= g(i) (t) <= 2 on [0,infinity). for all i = 1,..., m. For any u(0) is an element of L-1(R-2 \ U-i=1(m){a(i)}) boolean AND L-loc(p)(R-2 \ U-i=1(m){ai}), p > 1, we prove the existence and uniqueness of solutions of the equation u(t) = Delta(log u), u > 0, in (R-2\. U-i=1(m){ai}) x(0,T), u(x,0) = u(0)(x) in R-2\ U-i=1(m){ai}, satisfying integral(R2)\ U-i=1(m){ai} u(x,t) dx = integral(R2)\U-i=1(m){ai} u(0)dx - 2 pi integral(0)(t) fds + 2 pi Sigma(i=1)(m) integral(0)(t) for all 0 <= t < T and log u(x, t)/ log vertical bar x vertical bar -> - f (t) as vertical bar x vertical bar -> infinity, log u(x, t)/log vertical bar x - a(i)vertical bar -> g(i) (t) as vertical bar x - a(i)vertical bar -> 0, uniformly on every compact subset of (0, T) for any i = 1,..., m under a mild assumption on u0 where T = sup{t > 0 : integral(R2)\U-i=1({ai})m u(0)dx > 2 pi integral(0)(t) fds - 2 pi Sigma(i=1)(m) integral(0)(t) g(i)ds}. We also obtain similar existence and uniqueness of solutions of the above equation in bounded smooth convex domains of R-2 with prescribed singularities at a finite number of points in the domain.
引用
收藏
页码:153 / 197
页数:45
相关论文
共 50 条
  • [21] Existence, Non-existence, and Uniqueness for a Heat Equation with Exponential Nonlinearity in R2
    Ioku, Norisuke
    Ruf, Bernhard
    Terraneo, Elide
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2015, 18 (01)
  • [22] On a nonhomogeneous and singular quasilinear equation involving critical growth in R2
    de Souza, Manasses
    Severo, Uberlandio B.
    Vieira, Gilberto F.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (03) : 513 - 531
  • [23] Local strict singular characteristics II: existence for stationary equations on R2
    Cheng, Wei
    Hong, Jiahui
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (05):
  • [24] EXISTENCE AND COST OF BOUNDARY CONTROLS FOR A DEGENERATE/SINGULAR PARABOLIC EQUATION
    Biccari, U.
    Hernandez-Santamaria, V
    Vancostenoble, J.
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2020, : 495 - 530
  • [25] Positive solutions for a singular nonlinear problem on a bounded domain in R2
    Zeddini, N
    POTENTIAL ANALYSIS, 2003, 18 (02) : 97 - 118
  • [26] Multiplicity of positive solutions for a singular and critical elliptic problem in R2
    Adimurthi
    Giacomoni, Jacques
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2006, 8 (05) : 621 - 656
  • [27] Multiple homoclinic solutions for a class of autonomous singular systems in R2
    Caldiroli, P
    Nolasco, M
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (01): : 113 - 125
  • [28] Positive Solutions for a Singular Nonlinear Problem on a Bounded Domain in R2
    Noureddine Zeddini
    Potential Analysis, 2003, 18 : 97 - 118
  • [29] Existence of solutions for degenerate elliptic equations with singular potential on conical singular manifolds
    Chen, Hua
    Wei, Yawei
    Zhou, Bin
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (11-12) : 1370 - 1384
  • [30] Existence and uniqueness of solutions for singular integral equation
    Zhongwei Cao
    Daqing Jiang
    Chengjun Yuan
    Donal O’Regan
    Positivity, 2008, 12 : 725 - 732