Thermodynamic study for hydrogen production from bio-oil via sorption-enhanced steam reforming: Comparison with conventional steam reforming

被引:48
|
作者
Xie, Huaqing [1 ]
Yu, Qingbo [1 ]
Lu, Han [1 ]
Zhang, Yuanyuan [1 ]
Zhang, Jianrong [1 ]
Qin, Qin [1 ]
机构
[1] Northeastern Univ, Sch Met, 11,Lane 3,WenHua Rd, Shenyang 110819, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Bio-oil; Hydrogen production; Steam reforming; Sorption-enhanced; Energy consumption; SITU CO2 CAPTURE; AQUEOUS FRACTION; HIGH-TEMPERATURE; SUPPORTED NICKEL; MODEL COMPOUNDS; BED REACTOR; ACETIC-ACID; CATALYSTS; GLYCEROL; SORBENT;
D O I
10.1016/j.ijhydene.2017.09.155
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The thermodynamic analysis of the sorption-enhanced steam reforming (SESR) process of bio-oil for hydrogen production was investigated in terms of equilibrium compositions, energy consumption, with the comparison with the conventional steam reforming (CSR) process. Compared to CSR process, the SESR process could obtain higher H-2 yield and concentration at lower temperature and S/C ratio, with both of the yield and concentration reaching over 90%. For decreasing the energy consumption, the sensible heat of the hot output streams from the two processes was recovered, with the recovered heat calculated by pinch analysis. To produce the same amount H-2, the total energy demand of the SESR process was obviously lower the CSR process, especially under low temperature zone. Finally, the parameters of the two processes were optimized with a matrix analysis method. For SESR process, the optimal SR conditions were the temperature of 500 degrees C 600 degrees C, the S/C ratio of 3.0, under which the consumptions of bio-oil and energy were about 20% and about 30% lower than those under the optimal conditions of CSR process, respectively. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:28718 / 28731
页数:14
相关论文
共 50 条
  • [41] Production of high-purity hydrogen by sorption-enhanced steam reforming process of methanol
    Xiang Wu
    Sufang Wu
    Journal of Energy Chemistry, 2015, (03) : 315 - 321
  • [42] Production of high-purity hydrogen by sorption-enhanced steam reforming process of methanol
    Xiang Wu
    Sufang Wu
    Journal of Energy Chemistry, 2015, 24 (03) : 315 - 321
  • [43] Production of high-purity hydrogen by sorption-enhanced steam reforming process of methanol
    Wu, Xiang
    Wu, Sufang
    JOURNAL OF ENERGY CHEMISTRY, 2015, 24 (03) : 315 - 321
  • [44] New Hybrid Materials for Improved Hydrogen Production by the Sorption-Enhanced Steam Reforming of Butanol
    Dewoolkar, Karan D.
    Vaidya, Prakash D.
    ENERGY TECHNOLOGY, 2017, 5 (08) : 1300 - 1310
  • [45] Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review
    Barelli, L.
    Bidini, G.
    Gallorini, F.
    Servili, S.
    ENERGY, 2008, 33 (04) : 554 - 570
  • [46] Continuous sorption-enhanced steam reforming of glycerol to high-purity hydrogen production
    Dou, Binlin
    Wang, Chao
    Chen, Haisheng
    Song, Yongchen
    Xie, Baozheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (27) : 11902 - 11909
  • [47] Maximum Hydrogen Production by Autothermal Steam Reforming of Bio-oil With NiCuZnAl Catalyst
    Yan, Shi-zhi
    Zhai, Qi
    Li, Quan-xin
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2012, 25 (03) : 365 - 372
  • [48] A Model for Carbon Deposition During Hydrogen Production by the Steam Reforming of Bio-oil
    Lan, P.
    Xu, Q-L.
    Lan, L-H.
    Ren, Zh-W.
    Zhang, S-P.
    Yan, Y-J.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2014, 36 (03) : 250 - 258
  • [49] Thermodynamic Study of Hydrogen Production via Bioglycerol Steam Reforming
    Tasnadi-Asztalos, Zsolt
    Imre-Lucaci, Arpad
    Cormos, Calin-Cristian
    Cormos, Ana-Maria
    Lazar, Mihaela-Diana
    Agachi, Paul-Serban
    24TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PTS A AND B, 2014, 33 : 1735 - 1740
  • [50] Investigation of sorption-enhanced hydrogen production by glycerol steam reforming in bubbling fluidized bed
    Yang, Shuliu
    Sun, Haoran
    Yang, Shiliang
    Hu, Jianhang
    Wang, Hua
    FUEL, 2023, 349