Deep Complex Convolutional Neural Networks for Subwavelength Microstructure Imaging

被引:2
|
作者
Wei, Teng-Fei [1 ]
Wang, Xiao-Hua [1 ]
Qu, Cheng-Hui [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Phys, Chengdu 611731, Peoples R China
[2] Qilu Res Inst, Jinan 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Iterative methods; Convolutional neural networks; Receivers; Rails; Transmitters; Real-time systems; Permittivity; Complex-value; convolutional neural network (CNN); deep learning (DL); inverse problems; subwavelength microstructure; INVERSE PROBLEMS; RECONSTRUCTION;
D O I
10.1109/TAP.2022.3188389
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To take the advantages of a convolutional neural network (CNN), U-net, and a complex-valued CNN (complex-CNN), a new complex-valued U-net (CU-net) is proposed for deep learning (DL)-based methods to solve inverse scattering problem (ISP). With the proposed CU-net, the complex scattered data carrying rich information of object can be directly used for inversion without any preprocessing, which is very helpful for the accuracy improvement of the final result. To validate the performance of proposed method, a microstructure, consisting of a finite periodic set of circular cylindrical dielectric rods, is considered and detected for textural abnormalities, which contains the missing, flaw, and displacement of the rods. The distances between rods and diameters of rods are both subwavelength, well beyond the Rayleigh criterion, which causes this ISP extremely ill-posed. For comparison, both the conventional iterative method and DL-based method are used to solve this nonlinear problem. Numerical simulations demonstrate that the well-trained DL-based methods can successfully produce excellent results almost in real time and can greatly outperform the conventional iterative methods in terms of quality and efficiency.
引用
收藏
页码:6329 / 6335
页数:7
相关论文
共 50 条
  • [31] Elastography mapped by deep convolutional neural networks
    LIU DongXu
    KRUGGEL Frithjof
    SUN LiZhi
    Science China(Technological Sciences), 2021, (07) : 1567 - 1574
  • [32] Plug and Play Deep Convolutional Neural Networks
    Neary, Patrick
    Allan, Vicki
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 388 - 395
  • [33] An Efficient Accelerator for Deep Convolutional Neural Networks
    Kuo, Yi-Xian
    Lai, Yeong-Kang
    2020 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TAIWAN), 2020,
  • [34] Metaphase finding with deep convolutional neural networks
    Moazzen, Yaser
    Capar, Abdulkerim
    Albayrak, Abdulkadir
    Calik, Nurullah
    Toreyin, Behcet Ugur
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 52 : 353 - 361
  • [35] Deep distributed convolutional neural networks: Universality
    Zhou, Ding-Xuan
    ANALYSIS AND APPLICATIONS, 2018, 16 (06) : 895 - 919
  • [36] Predicting enhancers with deep convolutional neural networks
    Min, Xu
    Zeng, Wanwen
    Chen, Shengquan
    Chen, Ning
    Chen, Ting
    Jiang, Rui
    BMC BIOINFORMATICS, 2017, 18
  • [37] Theory of deep convolutional neural networks: Downsampling
    Zhou, Ding-Xuan
    NEURAL NETWORKS, 2020, 124 : 319 - 327
  • [38] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90
  • [39] Structured Pruning of Deep Convolutional Neural Networks
    Anwar, Sajid
    Hwang, Kyuyeon
    Sung, Wonyong
    ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2017, 13 (03)
  • [40] Deep convolutional neural networks in the face of caricature
    Matthew Q. Hill
    Connor J. Parde
    Carlos D. Castillo
    Y. Ivette Colón
    Rajeev Ranjan
    Jun-Cheng Chen
    Volker Blanz
    Alice J. O’Toole
    Nature Machine Intelligence, 2019, 1 : 522 - 529