ProLSFEO-LDL: Prototype Selection and Label- Specific Feature Evolutionary Optimization for Label Distribution Learning

被引:8
|
作者
Gonzalez, Manuel [1 ]
Cano, Jose-Ramon [2 ]
Garcia, Salvador [1 ]
机构
[1] Univ Granada, Dept Comp Sci & Artificial Intelligence, Granada 18071, Spain
[2] Univ Jaen, Dept Comp Sci, EPS Linares, Ave Univ S-N, Jaen 23700, Spain
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 09期
关键词
label distribution learning; evolutionary optimization; protoype selection; label-specific feature; machine learning; CLASSIFICATION; ALGORITHM; CLASSIFIERS; SETS;
D O I
10.3390/app10093089
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Label Distribution Learning (LDL) is a general learning framework that assigns an instance to a distribution over a set of labels rather than to a single label or multiple labels. Current LDL methods have proven their effectiveness in many real-life machine learning applications. In LDL problems, instance-based algorithms and particularly the adapted version of the k-nearest neighbors method for LDL (AA-kNN) has proven to be very competitive, achieving acceptable results and allowing an explainable model. However, it suffers from several handicaps: it needs large storage requirements, it is not efficient predicting and presents a low tolerance to noise. The purpose of this paper is to mitigate these effects by adding a data reduction stage. The technique devised, called Prototype selection and Label-Specific Feature Evolutionary Optimization for LDL (ProLSFEO-LDL), is a novel method to simultaneously address the prototype selection and the label-specific feature selection pre-processing techniques. Both techniques pose a complex optimization problem with a huge search space. Therefore, we have proposed a search method based on evolutionary algorithms that allows us to obtain a solution to both problems in a reasonable time. The effectiveness of the proposed ProLSFEO-LDL method is verified on several real-world LDL datasets, showing significant improvements in comparison with using raw datasets.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Label distribution feature selection for multi-label classification with rough set
    Qian, Wenbin
    Huang, Jintao
    Wang, Yinglong
    Xie, Yonghong
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2021, 128 : 32 - 55
  • [32] Multi-label feature selection based on stable label relevance and label-specific features
    Yang, Yong
    Chen, Hongmei
    Mi, Yong
    Luo, Chuan
    Horng, Shi-Jinn
    Li, Tianrui
    INFORMATION SCIENCES, 2023, 648
  • [33] Feature selection for label distribution learning based on neighborhood fuzzy rough sets
    Deng, Zhixuan
    Li, Tianrui
    Zhang, Pengfei
    Liu, Keyu
    Yuan, Zhong
    Deng, Dayong
    APPLIED SOFT COMPUTING, 2025, 169
  • [34] Multi-label Learning Based On Label-specific Feature Extraction
    Nie, Ting
    2018 9TH IEEE INTERNATIONAL CONFERENCE ON BIG KNOWLEDGE (ICBK), 2018, : 298 - 305
  • [35] Feature selection for label distribution learning based on the statistical distribution of data and fuzzy mutual information
    You, Hengyan
    Wang, Pei
    Li, Zhaowen
    INFORMATION SCIENCES, 2024, 679
  • [36] Multi-Label Feature Selection with Feature-Label Subgraph Association and Graph Representation Learning
    Ruan, Jinghou
    Wang, Mingwei
    Liu, Deqing
    Chen, Maolin
    Gao, Xianjun
    ENTROPY, 2024, 26 (11)
  • [37] Multi-label feature selection based on label distribution and neighborhood rough set
    Liu, Jinghua
    Lin, Yaojin
    Ding, Weiping
    Zhang, Hongbo
    Wang, Cheng
    Du, Jixiang
    NEUROCOMPUTING, 2023, 524 : 142 - 157
  • [38] Random forest feature selection for partial label learning
    Sun, Xianran
    Chai, Jing
    NEUROCOMPUTING, 2023, 561
  • [39] Multi-label Feature selection with adaptive graph learning and label information enhancement
    Qin, Zhi
    Chen, Hongmei
    Mi, Yong
    Luo, Chuan
    Horng, Shi-Jinn
    Li, Tianrui
    KNOWLEDGE-BASED SYSTEMS, 2024, 285
  • [40] Feature selection for label distribution learning using Dempster-Shafer evidence theory
    Zhao, Zhengwei
    Wang, Rongrong
    Pang, Wei
    Li, Zhaowen
    APPLIED INTELLIGENCE, 2025, 55 (04)