Adaptive Propagation Graph Convolutional Network

被引:54
|
作者
Spinelli, Indro [1 ]
Scardapane, Simone [1 ]
Uncini, Aurelio [1 ]
机构
[1] Sapienza Univ Rome, Dept Informat Engn Elect & Telecommunicat DIET, I-00184 Rome, Italy
关键词
Laplace equations; Convolutional codes; Protocols; Neural networks; Learning systems; Adaptive systems; Adaptation models; Convolutional network; graph data; graph neural network (GNN); node classification;
D O I
10.1109/TNNLS.2020.3025110
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph convolutional networks (GCNs) are a family of neural network models that perform inference on graph data by interleaving vertexwise operations and message-passing exchanges across nodes. Concerning the latter, two key questions arise: 1) how to design a differentiable exchange protocol (e.g., a one-hop Laplacian smoothing in the original GCN) and 2) how to characterize the tradeoff in complexity with respect to the local updates. In this brief, we show that the state-of-the-art results can be achieved by adapting the number of communication steps independently at every node. In particular, we endow each node with a halting unit (inspired by Graves' adaptive computation time [1]) that after every exchange decides whether to continue communicating or not. We show that the proposed adaptive propagation GCN (AP-GCN) achieves superior or similar results to the best proposed models so far on a number of benchmarks while requiring a small overhead in terms of additional parameters. We also investigate a regularization term to enforce an explicit tradeoff between communication and accuracy. The code for the AP-GCN experiments is released as an open-source library.
引用
收藏
页码:4755 / 4760
页数:6
相关论文
共 50 条
  • [41] Traffic Network Socialization: An Adaptive Spatio-Temporal Graph Convolutional Network for Traffic Prediction
    Wang, Rong
    Li, Miaofei
    Zhao, Jiankuan
    Cheng, Anyu
    Jia, Chaolong
    IEEE Transactions on Emerging Topics in Computing, 2024,
  • [42] Graph Convolutional Network Hashing
    Zhou, Xiang
    Shen, Fumin
    Liu, Li
    Liu, Wei
    Nie, Liqiang
    Yang, Yang
    Shen, Heng Tao
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (04) : 1460 - 1472
  • [43] Graph Wavelet Convolutional Network with Graph Clustering
    Inatsuki, Hiroki
    Uto, Toshiyuki
    2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 165 - 168
  • [44] Robust graph learning with graph convolutional network
    Wan, Yingying
    Yuan, Changan
    Zhan, Mengmeng
    Chen, Long
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (03)
  • [45] Scale Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition
    Wang X.
    Zhong Y.
    Jin L.
    Xiao Y.
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2022, 55 (03): : 306 - 312
  • [46] Adaptive Sampling Toward a Dynamic Graph Convolutional Network for Hyperspectral Image Classification
    Ding, Yun
    Feng, Jinpeng
    Chong, Yanwen
    Pan, Shaoming
    Sun, Xiaohui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [47] AMGCN: An adaptive multi-graph convolutional network for speech emotion recognition
    Lian, Hailun
    Lu, Cheng
    Chang, Hongli
    Zhao, Yan
    Li, Sunan
    Li, Yang
    Zong, Yuan
    SPEECH COMMUNICATION, 2025, 168
  • [48] Spatial adaptive graph convolutional network for skeleton-based action recognition
    Qilin Zhu
    Hongmin Deng
    Applied Intelligence, 2023, 53 : 17796 - 17808
  • [49] Adaptive Semantic-Spatio-Temporal Graph Convolutional Network for Lip Reading
    Sheng, Changchong
    Zhu, Xinzhong
    Xu, Huiying
    Pietikainen, Matti
    Liu, Li
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 24 : 3545 - 3557
  • [50] Landmark-Based Adaptive Graph Convolutional Network for Facial Expression Recognition
    Zhao, Daqi
    Wang, Jingwen
    Li, Haoming
    Wang, Deqiang
    IEEE ACCESS, 2024, 12 : 136088 - 136102