Kummer's conjecture for cubic Gauss sums

被引:26
|
作者
Heath-Brown, DR [1 ]
机构
[1] Magdalene Coll, Oxford OX1 4AU, England
关键词
D O I
10.1007/s11856-000-1273-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the normalized cubic Gauss sums for integers c = 1 ((mod 3)) of the field Q root -3 satisfy [GRAPHICS] for every I E Z and any E > 0. This improves on the estimate established by Heath-Brown and Patterson [4] in demonstrating the uniform distribution of the cubic Gauss sums around the unit circle. When l = 0 it is conjectured that the above sum is asymptotically of order X-5/6, so that the upper bound is essentially best possible. The proof uses a cubic analogue of the author's mean value estimate for quadratic character sums [3].
引用
收藏
页码:97 / 124
页数:28
相关论文
共 50 条
  • [31] ON GAUSS SUMS AND THE EVALUATION OF STECHKIN'S CONSTANT
    Banks, William D.
    Shparlinski, Igor E.
    MATHEMATICS OF COMPUTATION, 2016, 85 (301) : 2569 - 2581
  • [32] The Gauss map and secants of the Kummer variety
    Auffarth, Robert
    Codogni, Giulio
    Manni, Riccardo Salvati
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2019, 51 (03) : 489 - 500
  • [33] A remark for Gauss sums of order 3 and some applications for cubic congruence equations
    Ge, Wenxu
    Li, Weiping
    Wang, Tianze
    AIMS MATHEMATICS, 2022, 7 (06): : 10671 - 10680
  • [34] On a Gauss-Kummer Convergence Model
    Bucur, Ileana
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2022, 43 (10) : 1141 - 1149
  • [35] ON A TWISTED VERSION OF LINNIK AND SELBERG'S CONJECTURE ON SUMS OF KLOOSTERMAN SUMS
    Steiner, Raphael S.
    MATHEMATIKA, 2019, 65 (03) : 437 - 474
  • [36] On Linnik's Conjecture: Sums of Squares and Microsquares
    Wooley, Trevor D.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (20) : 5713 - 5736
  • [37] On Montgomery's conjecture and the distribution of Dirichlet sums
    Enflo, Per H.
    Gurariy, Vladimir I.
    Seoane-Sepulveda, Juan B.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (04) : 1241 - 1255
  • [38] On the products arising from the Kummer conjecture
    Zhang, Jun Huai
    Yi, Yuan
    Xi, Ping
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (08) : 1677 - 1688
  • [39] ON THE DEDEKIND SUMS AND THE QUADRATIC GAUSS SUMS
    Wang Tingting
    Zhang Wenpeng
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2012, 41 (01): : 77 - 83
  • [40] DISTRIBUTION OF KUMMER SUMS AT PRIME ARGUMENTS
    HEATHBROWN, DR
    PATTERSON, SJ
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1979, 310 : 111 - 130