All-Solid-State Chloride-Ion Battery with Inorganic Solid Electrolyte

被引:16
|
作者
Sakamoto, Ryo [1 ]
Shirai, Nobuaki [2 ]
Inoishi, Atsushi [1 ]
Okada, Shigeto [1 ]
机构
[1] Kyushu Univ, Inst Mat Chem & Engn, 6-1 Kasuga Koen, Kasuga, Fukuoka 8168580, Japan
[2] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, 6-1 Kasuga Koen, Kasuga, Fukuoka 8168580, Japan
来源
CHEMELECTROCHEM | 2021年 / 8卷 / 23期
关键词
batteries; electrochemistry; solid electrolytes; chloride; power sources; CATHODE; CONDUCTIVITY;
D O I
10.1002/celc.202101017
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Chloride-ion batteries have some attractive properties such as high energy density and low cost. However, they have poor cycle performance because chloride as an active material tends to dissolve into a polar solvent. Herein, an all-solid-state chloride-ion battery is demonstrated with KCl-doped PbCl2 as a solid electrolyte to suppress the dissolution of chloride. The all-solid-state cell with BiCl3 as the cathode had an initial discharge capacity of 187 mAh g(-1), which corresponds to 73 % of the theoretical capacity of BiCl3. Moreover, it exhibited better cyclability compared to the previously reported non-aqueous cell with BiCl3 cathode. During the charge-discharge process, XRD and XPS analysis confirmed the unique behavior of conversion reaction by Cl- anion, where Bi is produced by discharging and BiCl3 returns by charging.
引用
收藏
页码:4441 / 4444
页数:4
相关论文
共 50 条
  • [31] All-solid-state polymer electrolyte with plastic crystal materials for rechargeable lithium-ion battery
    Fan, Li-Zhen
    Wang, Xiao-Liang
    Long, Fei
    JOURNAL OF POWER SOURCES, 2009, 189 (01) : 775 - 778
  • [32] Thin laminar inorganic solid electrolyte with high ionic conductance towards high-performance all-solid-state lithium battery
    Guo, Shiyuan
    Kou, Weijie
    Wu, Wenjia
    Lv, Ruixin
    Yang, Zhihao
    Wang, Jingtao
    CHEMICAL ENGINEERING JOURNAL, 2022, 427
  • [34] Solid electrolyte membranes for all-solid-state rechargeable batteries
    Zhang, Nini
    Zhao, Xiaolei
    Liu, Gaozhan
    Peng, Zhe
    Wu, Jinghua
    Men, Mingyang
    Yao, Xiayin
    ETRANSPORTATION, 2024, 20
  • [35] Progress and Prospects of Inorganic Solid-State Electrolyte-Based All-Solid-State Pouch Cells
    Wang, Changhong
    Kim, Jung Tae
    Wang, Chunsheng
    Sun, Xueliang
    ADVANCED MATERIALS, 2023, 35 (19)
  • [36] NOVEL STRUCTURED ELECTROLYTE FOR ALL-SOLID-STATE LITHIUM ION BATTERIES
    Liu, Wei
    Milcarek, Ryan
    Wang, Kang
    Ahn, Jeongmin
    PROCEEDINGS OF THE ASME 13TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2015, 2016,
  • [37] Inorganic All-Solid-State Sodium Batteries: Electrolyte Designing and Interface Engineering
    Yang, Yaxiong
    Yang, Shoumeng
    Xue, Xu
    Zhang, Xianghua
    Li, Qifei
    Yao, Yu
    Rui, Xianhong
    Pan, Hongge
    Yu, Yan
    ADVANCED MATERIALS, 2024, 36 (01)
  • [38] Electrolyte precursor-free approach to prepare composite electrolyte for all-solid-state Na-ion battery
    He, L.
    Wang, Z.
    Li, Y.
    Lin, H.
    Li, J.
    Cheng, T.
    Zhu, Q.
    Shang, C.
    Lu, Z.
    Floriano, R.
    Li, H. -w.
    MATERIALS TODAY CHEMISTRY, 2023, 31
  • [39] All-solid-state lithium secondary battery with ceramic/polymer composite electrolyte
    Kobayashi, Y
    Miyashiro, H
    Takeuchi, T
    Shigemura, H
    Balakrishnan, N
    Tabuchi, M
    Kageyama, H
    Iwahori, T
    SOLID STATE IONICS, 2002, 152 : 137 - 142
  • [40] Long Cycle Life All-Solid-State Sodium Ion Battery
    Yue, Jie
    Zhu, Xiangyang
    Han, Fudong
    Fan, Xiulin
    Wang, Luning
    Yang, Jian
    Wang, Chunsheng
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (46) : 39645 - 39650