Rate-optimal nonparametric estimation in classical and Berkson errors-in-variables problems

被引:5
|
作者
Delaigle, Aurore [1 ]
Meister, Alexander [2 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
[2] Univ Rostock, Inst Math, D-18051 Rostock, Germany
关键词
Bandwidth; Deconvolution; Kernel methods; Local polynomial; Measurement error; Minimax convergence rates; Nonparametric regression; SIMULATION-EXTRAPOLATION; REGRESSION ESTIMATION; NONLINEAR MODELS; DECONVOLUTION; CONVERGENCE; MIXTURE;
D O I
10.1016/j.jspi.2010.05.020
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider nonparametric estimation of a regression curve when the data are observed with Berkson errors or with a mixture of classical and Berkson errors. In this context, other existing nonparametric procedures can either estimate the regression curve consistently on a very small interval or require complicated inversion of an estimator of the Fourier transform of a nonparametric regression estimator. We introduce a new estimation procedure which is simpler to implement, and study its asymptotic properties. We derive convergence rates which are faster than those previously obtained in the literature, and we prove that these rates are optimal. We suggest a data-driven bandwidth selector and apply our method to some simulated examples. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 114
页数:13
相关论文
共 50 条
  • [21] Simultaneous inference for Berkson errors-in-variables regression under fixed design
    Proksch, Katharina
    Bissantz, Nicolai
    Holzmann, Hajo
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2022, 74 (04) : 773 - 800
  • [22] Nonparametric estimation of the conditional mode with errors-in-variables: Strong consistency for mixing processes
    Ioannides, DA
    Matzner-Lober, E
    Crest-Ensai
    JOURNAL OF NONPARAMETRIC STATISTICS, 2002, 14 (03) : 341 - 352
  • [23] Simultaneous inference for Berkson errors-in-variables regression under fixed design
    Katharina Proksch
    Nicolai Bissantz
    Hajo Holzmann
    Annals of the Institute of Statistical Mathematics, 2022, 74 : 773 - 800
  • [24] Nonparametric estimation of cumulative distribution function from noisy data in the presence of Berkson and classical errors
    Cao Xuan Phuong
    Le Thi Hong Thuy
    Vo Nguyen Tuyet Doan
    Metrika, 2022, 85 : 289 - 322
  • [25] NONPARAMETRIC IDENTIFICATION AND ESTIMATION OF NONCLASSICAL ERRORS-IN-VARIABLES MODELS WITHOUT ADDITIONAL INFORMATION
    Chen, Xiaohong
    Hu, Yingyao
    Lewbel, Arthur
    STATISTICA SINICA, 2009, 19 (03) : 949 - 968
  • [26] Nonparametric estimation of cumulative distribution function from noisy data in the presence of Berkson and classical errors
    Cao Xuan Phuong
    Le Thi Hong Thuy
    Vo Nguyen Tuyet Doan
    METRIKA, 2022, 85 (03) : 289 - 322
  • [27] RATE-OPTIMAL GRAPHON ESTIMATION
    Gao, Chao
    Lu, Yu
    Zhou, Harrison H.
    ANNALS OF STATISTICS, 2015, 43 (06): : 2624 - 2652
  • [28] Algorithms for optimal errors-in-variables filtering
    Diversi, R
    Guidorzi, R
    Soverini, U
    SYSTEMS & CONTROL LETTERS, 2003, 48 (01) : 1 - 13
  • [29] Nonparametric identification of linear dynamic errors-in-variables systems
    Zhang, Erliang
    Pintelon, Rik
    AUTOMATICA, 2018, 94 : 416 - 425
  • [30] Uniform confidence bands for nonparametric errors-in-variables regression
    Kato, Kengo
    Sasaki, Yuya
    JOURNAL OF ECONOMETRICS, 2019, 213 (02) : 516 - 555