Statistical Prediction of Extreme Events from Small Datasets

被引:3
|
作者
Racca, Alberto [1 ]
Magri, Luca [1 ,2 ,3 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge, England
[2] Imperial Coll London, Aeronaut Dept, London, England
[3] Alan Turing Inst, London, England
来源
COMPUTATIONAL SCIENCE - ICCS 2022, PT III | 2022年 / 13352卷
基金
英国工程与自然科学研究理事会;
关键词
Extreme events; Reservoir computing; Heavy tail distribution; NETWORKS;
D O I
10.1007/978-3-031-08757-8_58
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose Echo State Networks (ESNs) to predict the statistics of extreme events in a turbulent flow. We train the ESNs on small datasets that lack information about the extreme events. We asses whether the networks are able to extrapolate from the small imperfect datasets and predict the heavy-tail statistics that describe the events. We find that the networks correctly predict the events and improve the statistics of the system with respect to the training data in almost all cases analysed. This opens up new possibilities for the statistical prediction of extreme events in turbulence.
引用
收藏
页码:707 / 713
页数:7
相关论文
共 50 条
  • [21] Statistical downscaling of extreme precipitation events using extreme value theory
    Petra Friederichs
    Extremes, 2010, 13 : 109 - 132
  • [22] Statistical downscaling of extreme precipitation events using extreme value theory
    Friederichs, Petra
    EXTREMES, 2010, 13 (02) : 109 - 132
  • [23] Keys to Avoiding Statistical Pitfalls of Small Datasets in Radiomics
    Chatterjee, A.
    Vallieres, M.
    Dohan, A.
    Levesque, I.
    Ueno, Y.
    Bist, V.
    Saif, S.
    Reinhold, C.
    Seuntjens, J.
    MEDICAL PHYSICS, 2017, 44 (06) : 3114 - 3114
  • [24] A STATISTICAL FRAMEWORK TO EVALUATE EXTREME WEATHER DEFINITIONS FROM A HEALTH PERSPECTIVE A Demonstration Based on Extreme Heat Events
    Vaidyanathan, Ambarish
    Kegler, Scott R.
    Saha, Shubhayu S.
    Mulholland, James A.
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2016, 97 (10) : 1817 - 1830
  • [25] Quantitative simulation and prediction of extreme geological events
    Qiuming Cheng
    Science China Earth Sciences, 2022, 65 : 1012 - 1029
  • [26] Statistical analysis of extreme drought and wet events in Russia
    Utkuzova D.N.
    Han V.M.
    Vil’fand R.M.
    Atmospheric and Oceanic Optics, 2015, 28 (4) : 336 - 346
  • [27] Uncertainty analysis in statistical modeling of extreme hydrological events
    Xu, Yue-Ping
    Booij, Martijn J.
    Tong, Yang-Bin
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2010, 24 (05) : 567 - 578
  • [28] Quantitative simulation and prediction of extreme geological events
    Qiuming CHENG
    ScienceChina(EarthSciences), 2022, 65 (06) : 1012 - 1029
  • [29] LQ-Moments for Statistical Analysis of Extreme Events
    Shabri, Ani
    Jemain, Abdul Aziz
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2007, 6 (01) : 228 - 238
  • [30] Statistical analyses of extreme rainfall events in Thessaloniki, Greece
    Douka, Maria
    Karacostas, Theodore
    ATMOSPHERIC RESEARCH, 2018, 208 : 60 - 77