Mesoscopic Casimir forces in quantum vacuum

被引:5
|
作者
Volovik, GE [1 ]
机构
[1] Helsinki Univ Technol, Low Temp Lab, FIN-02015 Hut, Finland
[2] Russian Acad Sci, LD Landau Theoret Phys Inst, Moscow 117940, Russia
关键词
D O I
10.1134/1.1381589
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Traditionally, it is assumed that the Casimir vacuum pressure does not depend on the ultraviolet cutoff. There are, however, some arguments that the effect actually depends on the regularization procedure and thus on trans-Planckian physics. We provide the condensed matter example where the Casimir forces do explicitly depend on microscopic (correspondingly trans-Planckian) physics due to the mesoscopic finite-N effects, where N is the number of bare particles in condensed matter (or correspondingly the number of elements comprising the quantum vacuum). The finite-N effects lead to mesoscopic fluctuations of the vacuum pressure. The amplitude of the mesoscopic fluctuations of the Casimir force in a system with linear dimension L is a factor of N-1/3 similar to L /a(P) larger than the traditional value of the Casimir force given by effective theory, where a(P) = (h) over bar /p(P) is the interatomic distance which plays the role of the Planck length. (C) 2001 MAIK "Nauka/Interperiodica".
引用
收藏
页码:375 / 379
页数:5
相关论文
共 50 条
  • [41] How does Casimir energy fall? III. Inertial forces on vacuum energy
    Shajesh, K. V.
    Milton, Kimball A.
    Parashar, Prachi
    Wagner, Jeffrey A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (16)
  • [42] Thermal Casimir versus Casimir-Polder forces: Equilibrium and nonequilibrium forces
    Buhmann, Stefan Yoshi
    Scheel, Stefan
    PHYSICAL REVIEW LETTERS, 2008, 100 (25)
  • [43] Casimir forces and quantum friction of finite-size atoms in relativistic trajectories
    Rodriguez-Lopez, Pablo
    Martin-Martinez, Eduardo
    PHYSICAL REVIEW A, 2018, 98 (03)
  • [44] Quantum fluctuation in thermal vacuum state for mesoscopic LC electric circuit
    Fan, HY
    Liang, XT
    CHINESE PHYSICS LETTERS, 2000, 17 (03) : 174 - 176
  • [45] Trapping atoms using nanoscale quantum vacuum forces
    D. E. Chang
    K. Sinha
    J. M. Taylor
    H. J. Kimble
    Nature Communications, 5
  • [46] Trapping atoms using nanoscale quantum vacuum forces
    Chang, D. E.
    Sinha, K.
    Taylor, J. M.
    Kimble, H. J.
    NATURE COMMUNICATIONS, 2014, 5
  • [47] QUANTUM FLUCTUATIONS OF THE OPTICAL FORCES ON ATOMS IN A SQUEEZED VACUUM
    SHEVY, Y
    CROSIGNANI, B
    YARIV, A
    PHYSICAL REVIEW A, 1992, 46 (03): : 1421 - 1425
  • [48] Quantum flunctuations in thermal vacuum state for mesoscopic RLC electric circuit
    Wang, ZQ
    ACTA PHYSICA SINICA, 2002, 51 (08) : 1808 - 1810
  • [49] Quantum fluctuation of mesoscopic capacitance coupled circuit in a thermal vacuum state
    Zhu, AD
    Zhang, S
    Jin, Z
    Zhao, YF
    Jing, XG
    Qian, ZN
    Su, WH
    CHINESE PHYSICS LETTERS, 2003, 20 (12) : 2231 - 2234
  • [50] Harnessing Vacuum Forces for Quantum Sensing of Graphene Motion
    Muschik, Christine A.
    Moulieras, Simon
    Bachtold, Adrian
    Koppens, Frank H. L.
    Lewenstein, Maciej
    Chang, Darrick E.
    PHYSICAL REVIEW LETTERS, 2014, 112 (22)