Machine Learning-Based Uncertainty Quantification of Passive Intermodulation in Aluminum Contact

被引:0
|
作者
Treviso, Felipe [1 ]
Trinchero, Riccardo [1 ]
Canavero, Flavio G. [1 ]
机构
[1] Politecn Torino, Dept Elect & Telecommun, Turin, Italy
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper deals with the development of a surrogate model for the uncertainty quantification and the stochastic analysis of passive intermodulation (PIM) in an AluminumAluminum contact based on the least-squares support vector machine (LS-SVM) regression. Starting from a small set of training pairs collecting the configuration of the uncertain parameters and the corresponding PIM level, the LS-SVM allows to build a closed-form approximation of such non-linear relationship. Such model, can be suitably used within a Monte Carlo (MC) scenario in order to accelerate the simulation process and provide all the statistical quantities of interest. The results show a considerable speed-up on the computational time compared to a plain MC simulation, while achieving an accurate approximation of the PIM probability density function.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Machine Learning-Based predictions of crack growth rates in an aeronautical aluminum alloy
    Freed, Yuval
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2024, 130
  • [42] Machine learning the deuteron: new architectures and uncertainty quantification
    Sarmiento, J. Rozalen
    Keeble, J. W. T.
    Rios, A.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (02):
  • [43] Machine Learning in Measurement Part 2: Uncertainty Quantification
    Al Osman H.
    Shirmohammadi S.
    IEEE Instrumentation and Measurement Magazine, 2021, 24 (03): : 23 - 27
  • [44] Machine Learning in Measurement Part 2: Uncertainty Quantification
    Al Osman, Hussein
    Shirmohammadi, Shervin
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2021, 24 (03) : 23 - 27
  • [45] Evaluation of machine learning techniques for forecast uncertainty quantification
    Sacco, Maximiliano A.
    Ruiz, Juan J.
    Pulido, Manuel
    Tandeo, Pierre
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2022, 148 (749) : 3470 - 3490
  • [46] Uncertainty quantification of machine learning models: on conformal prediction
    Akpabio, Inimfon I.
    Savari, Serap A.
    JOURNAL OF MICRO-NANOPATTERNING MATERIALS AND METROLOGY-JM3, 2021, 20 (04):
  • [47] Development of Machine Learning-based Segmentation and Height Measurement Method for the Contact Wires
    Jeong D.
    Lee K.
    Park C.
    Kim D.
    Transactions of the Korean Institute of Electrical Engineers, 2024, 73 (02): : 382 - 388
  • [48] Sensitivity analysis and uncertainty quantification of neutron noise simulations in WWER-type reactors using machine learning-based surrogate models
    Kamkar, A.
    Abbasi, M.
    NUCLEAR ENGINEERING AND DESIGN, 2025, 433
  • [49] Machine learning-based frequency security early warning considering uncertainty of renewable generation
    Li, Huarui
    Li, Changgang
    Liu, Yutian
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 134
  • [50] Quantification of the covariation of lake microbiomes and environmental variables using a machine learning-based framework
    Sperlea, Theodor
    Kreuder, Nico
    Beisser, Daniela
    Hattab, Georges
    Boenigk, Jens
    Heider, Dominik
    MOLECULAR ECOLOGY, 2021, 30 (09) : 2131 - 2144