Simple proof of stationary phase method and application to oscillatory bifurcation problems

被引:3
|
作者
Kato, Keiichi [1 ]
Shibata, Tetsutaro [2 ]
机构
[1] Tokyo Univ Sci, Fac Sci, Dept Math, Shinjuku Ku, Kagurazaka 1-3, Tokyo 1628601, Japan
[2] Hiroshima Univ, Grad Sch Engn, Lab Math, Higashihiroshima 7398527, Japan
关键词
Oscillatory bifurcation; Global structure; Nonlinear eigenvalue problems; CURVES;
D O I
10.1016/j.na.2019.111594
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear eigenvalue problem -u '' (t) = lambda f(u(t)), u(t) > 0, t is an element of I := (-1,1), u(+/- 1) = 0, where f(u) = f(1)(u) = u(3) sin(u(3))/u, f(u) = f(2) (u) = u + u(p) sin(u(q)) (0 <= p < 1, 1 < q <= p + 2) and lambda > 0 is a bifurcation parameter. It is known that, in this case, A is parameterized by the maximum norm alpha = parallel to u(lambda)parallel to(infinity) of the solution u(lambda) associated with lambda and is written as lambda = lambda(alpha). We simplify the argument of the stationary phase method and show the asymptotic formulas for lambda(alpha) for f(1)(u) and f(2) (u) as alpha -> infinity and alpha -> 0. In particular, the shape of bifurcation diagram of lambda(alpha) for f(1)(u) seems to be new. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A simple proof of the constancy of the Pontryagin Hamiltonian for autonomous problems
    Torres, Delfim F. M.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2006, 4 (J06): : 23 - 24
  • [42] Application of Broyden's method to the enthalpy method for phase change problems
    Chiu, CK
    Caldwell, J
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 1996, 30 (06) : 575 - 587
  • [43] A simple proof of the constancy of the pontryagin hamiltonian for autonomous problems
    Torres, Delfim F. M.
    International Journal of Applied Mathematics and Statistics, 2006, 4 (JO6): : 23 - 24
  • [44] APPLICATION OF THE RITZ AND GALERKIN METHODS IN BIFURCATION PROBLEMS
    TROGER, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1983, 63 (04): : T115 - T116
  • [45] ON THE ACCURACY OF THE STATIONARY PHASE METHOD
    MULAK, G
    OPTICA APPLICATA, 1985, 15 (04) : 339 - 347
  • [46] Stationary phase method (APO)
    EUT Report, Eindhoven University of Technology, Faculty of Electrical Engineering, 1991, (91-E-252):
  • [47] A Stroboscopic Numerical Method for Highly Oscillatory Problems
    Paz Calvo, Mari
    Chartier, Philippe
    Murua, Ander
    Maria Sanz-Serna, Jesus
    NUMERICAL ANALYSIS OF MULTISCALE COMPUTATIONS, 2012, 82 : 71 - +
  • [48] SPLITTING ITERATION METHOD FOR SIMPLE SINGULAR POINTS AND SIMPLE BIFURCATION POINTS
    ZHEN, M
    COMPUTING, 1989, 41 (1-2) : 87 - 96
  • [49] Inverse bifurcation analysis: application to simple gene systems
    Lu, James
    Engl, Heinz W.
    Schuster, Peter
    ALGORITHMS FOR MOLECULAR BIOLOGY, 2006, 1 (1)
  • [50] Inverse bifurcation analysis: application to simple gene systems
    James Lu
    Heinz W Engl
    Peter Schuster
    Algorithms for Molecular Biology, 1