Sarcodon aspratus polysaccharides ameliorated obesity-induced metabolic disorders and modulated gut microbiota dysbiosis in mice fed a high-fat diet

被引:7
|
作者
Chen, Juan [1 ]
Liu, Jiaojiao [1 ]
Yan, Chenchen [1 ]
Zhang, Chan [1 ]
Pan, Wenjuan [1 ]
Zhang, Wenna [1 ]
Lu, Yongming [1 ]
Chen, Lei [1 ]
Chen, Yan [1 ,2 ,3 ]
机构
[1] Anhui Univ, Sch Life Sci, Hefei 230601, Anhui, Peoples R China
[2] Key Lab Anhui Ecol Engn & Biotechnol, Hefei 230601, Anhui, Peoples R China
[3] Key Lab Modern Biomfg Anhui Prov, Hefei 230601, Anhui, Peoples R China
关键词
INFLAMMATION; EXPRESSION;
D O I
10.1039/c9fo00963a
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sarcodon aspratus is a popular edible fungus that has commonly been used as a functional food in China and other Asian countries. This study is conducted to examine the potential health benefits of Sarcodon aspratus polysaccharides (SATPs), on obesity and related metabolism disorders. C57BL/6J mice were fed with a high-fat diet (HFD) and supplemented with SATPs (100-400 mg kg(-1)) for 14 weeks. The results indicated that SATP treatment markedly reduced HFD-induced body weight gain and fat accumulation in a dose-dependent manner. SATPs could improve lipid homeostasis and glucose tolerance in HFD-fed mice. Furthermore, SATP intervention significantly attenuated hepatic steatosis, liver oxidative stress and inflammation. Additionally, we detected the macrophage and mRNA levels of lipogenesis markers in epididymal adipose tissues, and the results revealed that SATPs exerted inhibitory effects on the activation of immune cells and adipocyte differentiation in adipose tissues. High-throughput pyrosequencing of 16S rRNA suggested that SATP intervention was able to down-regulate the Firmicutes-to-Bacteroidetes ratio, and also increase the relative abundance of Lactobacillus, Bacteroides and Akkermansia in mice with HFD challenge. Taken together, SATPs showed ameliorative effects on hepatic steatosis, inflammation and adipocyte differentiation in HFD-fed mice. Notably, SATPs could modulate HFD-induced dysbiosis of gut microbiota. Thus, they might be a potential health supplement or prebiotic in the prevention of obesity and related metabolic disorders.
引用
收藏
页码:2588 / 2602
页数:15
相关论文
共 50 条
  • [21] Sodium alginate and galactooligosaccharides ameliorate metabolic disorders and alter the composition of the gut microbiota in mice with high-fat diet-induced obesity
    Li, Yao
    Huang, Juan
    Zhang, Silu
    Yang, Fan
    Zhou, Haolin
    Song, Yang
    Wang, Bing
    Li, Huajun
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 215 : 113 - 122
  • [22] Butyrate Improves the Metabolic Disorder and Gut Microbiome Dysbiosis in Mice Induced by a High-Fat Diet
    Gao, Feng
    Lv, Yi-Wei
    Long, Jie
    Chen, Jie-Mei
    He, Jiu-ming
    Ruan, Xiong-Zhong
    Zhu, Hai-bo
    FRONTIERS IN PHARMACOLOGY, 2019, 10
  • [23] Tartary Buckwheat (Fagopyrum tataricum) Ameliorates Lipid Metabolism Disorders and Gut Microbiota Dysbiosis in High-Fat Diet-Fed Mice
    Li, Ang
    Wang, Jin
    Wang, Yuanyifei
    Zhang, Bowei
    Chen, Zhenjia
    Zhu, Junling
    Wang, Xiaowen
    Wang, Shuo
    FOODS, 2022, 11 (19)
  • [24] Grape Polyphenol Attenuated Hyperlipidemia and Modulated Gut Microbiota in High-fat Diet-fed Mice
    Lu F.
    Liu F.
    Hu X.
    Zhang Y.
    Journal of Chinese Institute of Food Science and Technology, 2021, 21 (07) : 97 - 106
  • [25] Polysaccharides from Cordyceps militaris prevent obesity in association with modulating gut microbiota and metabolites in high-fat diet-fed mice
    Huang, Rui
    Zhu, Zhenjun
    Wu, Shujian
    Wang, Juan
    Chen, Mengfei
    Liu, Wei
    Huang, Aohuan
    Zhang, Jumei
    Wu, Qingping
    Ding, Yu
    FOOD RESEARCH INTERNATIONAL, 2022, 157
  • [26] Resveratrol reduces obesity in high-fat diet-fed mice via modulating the composition and metabolic function of the gut microbiota
    Wang, Pan
    Gao, Jianpeng
    Ke, Weixin
    Wang, Jing
    Li, Daotong
    Liu, Ruolin
    Jia, Yan
    Wang, Xuehua
    Chen, Xin
    Chen, Fang
    Hu, Xiaosong
    FREE RADICAL BIOLOGY AND MEDICINE, 2020, 156 : 83 - 98
  • [27] Modulation of Gut Microbiota by Fucoxanthin During Alleviation of Obesity in High-Fat Diet-Fed Mice
    Sun, Xiaowen
    Zhao, Hailong
    Liu, Zonglin
    Sun, Xun
    Zhang, Dandan
    Wang, Shuhui
    Xu, Ying
    Zhang, Guofang
    Wang, Dongfeng
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2020, 68 (18) : 5118 - 5128
  • [28] Mannan-oligosaccharide modulates the obesity and gut microbiota in high-fat diet-fed mice
    Wang, Hongshan
    Zhang, Xiaojuan
    Wang, Shanshan
    Li, Heng
    Lu, Zhenming
    Shi, Jinsong
    Xu, Zhenghong
    FOOD & FUNCTION, 2018, 9 (07) : 3916 - 3929
  • [29] Antrodia cinnamomea reduces obesity and modulates the gut microbiota in high-fat diet-fed mice
    C-J Chang
    C-C Lu
    C-S Lin
    J Martel
    Y-F Ko
    D M Ojcius
    T-R Wu
    Y-H Tsai
    T-S Yeh
    J-J Lu
    H-C Lai
    J D Young
    International Journal of Obesity, 2018, 42 : 231 - 243
  • [30] Antrodia cinnamomea reduces obesity and modulates the gut microbiota in high-fat diet-fed mice
    Chang, C-J
    Lu, C-C
    Lin, C-S
    Martel, J.
    Ko, Y-F
    Ojcius, D. M.
    Wu, T-R
    Tsai, Y-H
    Yeh, T-S
    Lu, J-J
    Lai, H-C
    Young, J. D.
    INTERNATIONAL JOURNAL OF OBESITY, 2018, 42 (02) : 231 - 243