Using (G′/G)-expansion method to seek the traveling wave solution of Kolmogorov-Petrovskii-Piskunov equation

被引:50
|
作者
Feng, Jishe [1 ]
Li, Wanjun [1 ]
Wan, Qiaoling [1 ]
机构
[1] Longdong Univ, Dept Math, Qingyang 745000, Gansu, Peoples R China
关键词
(G '/G)-expansion method; Kolmogorov-Petrovskii-Piskunov equation; Traveling wave solution; NONLINEAR EVOLUTION-EQUATIONS; EXPANSION METHOD; MATHEMATICAL PHYSICS; SYMBOLIC COMPUTATION; EXPLICIT SOLUTIONS;
D O I
10.1016/j.amc.2010.12.071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the (G'/G)-expansion method to seek the traveling wave solutions of the Kolmogorov-Petrovskii-Piskunov equation. The solutions obtained in this paper are more general than the solutions given in Refs. [23-25], and the computation procedure is much simpler. It is shown that the (G'/G)-expansion method provides a very effective and powerful tool for solving nonlinear equations in mathematical physics. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:5860 / 5865
页数:6
相关论文
共 50 条
  • [31] The homotopy perturbation method applied to the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations
    Gepreel, Khaled A.
    APPLIED MATHEMATICS LETTERS, 2011, 24 (08) : 1428 - 1434
  • [32] ANALYTICAL METHODS FOR NON-LINEAR FRACTIONAL KOLMOGOROV-PETROVSKII-PISKUNOV EQUATION Soliton Solution and Operator Solution
    Xu, Bo
    Zhang, Yufeng
    Zhang, Sheng
    THERMAL SCIENCE, 2021, 25 (03): : 2161 - 2168
  • [33] Numerical-Analytical Method for Nonlinear Equations of Kolmogorov-Petrovskii-Piskunov Type
    Bezrodnykh, S. I.
    Pikulin, S. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (11) : 2484 - 2509
  • [34] Hermite Collocation and SSPRK Schemes for the Numerical Treatment of a Generalized Kolmogorov-Petrovskii-Piskunov Equation
    Athanasakis, I. E.
    Papadopoulou, E. P.
    Saridakis, Y. G.
    WORLD CONGRESS ON ENGINEERING, WCE 2015, VOL I, 2015, : 137 - 142
  • [35] The homotopy analysis method applied to the Kolmogorov-Petrovskii-Piskunov (KPP) and fractional KPP equations
    Hariharan, G.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 51 (03) : 992 - 1000
  • [36] Traveling waves in a reaction-diffusion system: Diffusion with finite velocity and Kolmogorov-Petrovskii-Piskunov kinetics
    Fedotov, S
    PHYSICAL REVIEW E, 1998, 58 (04): : 5143 - 5145
  • [37] Traveling wave solution for the BBM equation with any order by (G′/G)-expansion method
    Feng, Qinghua
    Zheng, Bin
    WSEAS Transactions on Mathematics, 2010, 9 (03) : 181 - 190
  • [38] Lie symmetry analysis, conservation laws and analytic solutions of the time fractional Kolmogorov-Petrovskii-Piskunov equation
    Qin, Chun-Yan
    Tian, Shou-Fu
    Wang, Xiu-Bin
    Zou, Li
    Zhang, Tian-Tian
    CHINESE JOURNAL OF PHYSICS, 2018, 56 (04) : 1734 - 1742
  • [39] Lie symmetry analysis, explicit solutions and conservation laws for the time fractional Kolmogorov-Petrovskii-Piskunov equation
    Zhou, Xuan
    Shan, Wenrui
    Niu, Zhilei
    Xiao, Pengcheng
    Wang, Ying
    WAVES IN RANDOM AND COMPLEX MEDIA, 2020, 30 (03) : 514 - 529
  • [40] Asymptotics of the Multidimensional Nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov Equation Near a Quasistationary Solution
    E. A. Levchenko
    A. Yu. Trifonov
    A. V. Shapovalov
    Russian Physics Journal, 2015, 58 : 952 - 958