Ensemble Learning of Hybrid Acoustic Features for Speech Emotion Recognition

被引:42
|
作者
Zvarevashe, Kudakwashe [1 ]
Olugbara, Oludayo [1 ]
机构
[1] Durban Univ Technol, South Africa Luban Workshop, ICT & Soc Res Grp, ZA-4001 Durban, South Africa
关键词
emotion recognition; ensemble algorithm; feature extraction; hybrid feature; machine learning; supervised learning; CLASSIFICATION; PERFORMANCE; SELECTION;
D O I
10.3390/a13030070
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic recognition of emotion is important for facilitating seamless interactivity between a human being and intelligent robot towards the full realization of a smart society. The methods of signal processing and machine learning are widely applied to recognize human emotions based on features extracted from facial images, video files or speech signals. However, these features were not able to recognize the fear emotion with the same level of precision as other emotions. The authors propose the agglutination of prosodic and spectral features from a group of carefully selected features to realize hybrid acoustic features for improving the task of emotion recognition. Experiments were performed to test the effectiveness of the proposed features extracted from speech files of two public databases and used to train five popular ensemble learning algorithms. Results show that random decision forest ensemble learning of the proposed hybrid acoustic features is highly effective for speech emotion recognition.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Ensemble Learning by High-Dimensional Acoustic Features for Emotion Recognition from Speech Audio Signal
    Chalapathi, M. M. Venkata
    Kumar, M. Rudra
    Sharma, Neeraj
    Shitharth, S.
    SECURITY AND COMMUNICATION NETWORKS, 2022, 2022
  • [2] Novel acoustic features for speech emotion recognition
    ROH Yong-Wan
    KIM Dong-Ju
    LEE Woo-Seok
    HONG Kwang-Seok
    Science in China(Series E:Technological Sciences), 2009, 52 (07) : 1838 - 1848
  • [3] SPEECH EMOTION RECOGNITION WITH ACOUSTIC AND LEXICAL FEATURES
    Jin, Qin
    Li, Chengxin
    Chen, Shizhe
    Wu, Huimin
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 4749 - 4753
  • [4] Novel acoustic features for speech emotion recognition
    Yong-Wan Roh
    Dong-Ju Kim
    Woo-Seok Lee
    Kwang-Seok Hong
    Science in China Series E: Technological Sciences, 2009, 52 : 1838 - 1848
  • [5] Novel acoustic features for speech emotion recognition
    Roh Yong-Wan
    Kim Dong-Ju
    Lee Woo-Seok
    Hong Kwang-Seok
    SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 2009, 52 (07): : 1838 - 1848
  • [6] SPEECH EMOTION RECOGNITION WITH ENSEMBLE LEARNING METHODS
    Shih, Po-Yuan
    Chen, Chia-Ping
    Wu, Chung-Hsien
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 2756 - 2760
  • [7] Deep Learning Algorithms for Speech Emotion Recognition with Hybrid Spectral Features
    Kogila R.
    Sadanandam M.
    Bhukya H.
    SN Computer Science, 5 (1)
  • [8] Hybrid Spectral Features for Speech Emotion Recognition
    Shah, Firoz A.
    Anto, Babu P.
    2017 INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION, EMBEDDED AND COMMUNICATION SYSTEMS (ICIIECS), 2017,
  • [9] Machine learning techniques for speech emotion recognition using paralinguistic acoustic features
    Jha T.
    Kavya R.
    Christopher J.
    Arunachalam V.
    International Journal of Speech Technology, 2022, 25 (03): : 707 - 725
  • [10] Ensemble deep learning with HuBERT for speech emotion recognition
    Yang, Janghoon
    2023 IEEE 17TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING, ICSC, 2023, : 153 - 154