Potentials with convergent Schwinger-DeWitt expansion

被引:0
|
作者
Slobodenyuk, VA [1 ]
机构
[1] Ulyanovsk State Univ, Phys Tech Dept, Ulyanovsk 432700, Russia
关键词
D O I
10.1023/A:1026648826455
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Convergence of the Schwinger-DeWitt expansion for the evolution operator kernel for special class of potentials is studied. It is shown that this expansion, which is in the general case asymptotic, converges for the potentials considered (widely used, in particular, in one-dimensional many-body problems), and that convergence takes place only for definite discrete values of the coupling constant. For other values of the charge, a divergent expansion determines the kernels having essential singularity at the origin (beyond the usual delta-function). If one considers only this class of potentials, then one can avoid many problems connected with asymptotic expansions, and one gets a theory with discrete values of the coupling constant that is in correspondence with the discreteness of charge in nature. This approach can be applied to quantum field theory.
引用
收藏
页码:1753 / 1771
页数:19
相关论文
共 50 条
  • [31] SCHWINGER TERMS AND LIGHT-CONE EXPANSION
    GOMBEROFF, L
    HORWITZ, LP
    PHYSICAL REVIEW D, 1973, 8 (08) : 2578 - 2583
  • [32] ANTINORMAL EXPANSION FOR ROTATION OPERATORS IN THE SCHWINGER REPRESENTATION
    FAN, HY
    PHYSICS LETTERS A, 1988, 131 (03) : 145 - 150
  • [33] On convergence of the Schwinger-De Witt expansion
    Slobodenyuk, VA
    MODERN PHYSICS LETTERS A, 1997, 12 (37) : 2889 - 2903
  • [34] A convergent genus expansion for the plateau
    Saad, Phil
    Stanford, Douglas
    Yang, Zhenbin
    Yao, Shunyu
    arXiv, 2022,
  • [35] A convergent genus expansion for the plateau
    Saad, Phil
    Stanford, Douglas
    Yang, Zhenbin
    Yao, Shunyu
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (09):
  • [36] ANTISYMMETRIZED LIPPMANN-SCHWINGER EQUATIONS AND OPTICAL POTENTIALS
    KOWALSKI, KL
    PHYSICAL REVIEW C, 1981, 24 (05): : 1915 - 1921
  • [38] NEW ASYMPTOTIC-EXPANSION METHOD FOR THE WHEELER-DEWITT EQUATION
    KIM, SP
    PHYSICAL REVIEW D, 1995, 52 (06): : 3382 - 3391
  • [39] BEYOND THE HOPPING EXPANSION IN THE STRONGLY COUPLED SCHWINGER MODEL
    GAUSTERER, H
    LANG, CB
    SALMHOFER, M
    NUCLEAR PHYSICS B, 1992, 388 (01) : 275 - 284
  • [40] The Schrodinger representation for fermions and a local expansion of the Schwinger model
    Nolland, D
    Mansfield, P
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (03): : 429 - 447