Compactlike discrete breathers in systems with nonlinear and nonlocal dispersive terms

被引:43
|
作者
Gorbach, AV [1 ]
Flach, S [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 05期
关键词
D O I
10.1103/PhysRevE.72.056607
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Discrete breathers with purely anharmonic short-range interaction potentials localize superexponentially becoming compactlike. We analyze their spatial localization properties and their dynamical stability. Several branches of solutions are identified. One of them connects to the well-known Page and Sievers-Takeno lattice modes, another one connects with the compacton solutions of Rosenau. The absence of linear dispersion allows for extremely long-lived time-quasiperiodic localized excitations. Adding long-range anharmonic interactions leads to an extreme case of competition between length scales defining the spatial breather localization. We show that short- and long-range interaction terms competition results in the appearance of several characteristic crossover lengths and essentially breaks the concept of compactness of the corresponding discrete breathers.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Breathers on a background: periodic and quasiperiodic solutions of extended discrete nonlinear wave systems
    Kevrekidis, PG
    Weinsteinb, MI
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 62 (1-2) : 65 - 78
  • [22] Intraband discrete breathers in disordered nonlinear systems. II. Localization
    Kopidakis, G
    Aubry, S
    PHYSICA D-NONLINEAR PHENOMENA, 2000, 139 (3-4) : 247 - 275
  • [23] NONLOCAL MODELS FOR NONLINEAR, DISPERSIVE WAVES
    ABDELOUHAB, L
    BONA, JL
    FELLAND, M
    SAUT, JC
    PHYSICA D, 1989, 40 (03): : 360 - 392
  • [24] Discrete nonlinear Schrodinger breathers in a phonon bath
    Rasmussen, KO
    Aubry, S
    Bishop, AR
    Tsironis, GP
    EUROPEAN PHYSICAL JOURNAL B, 2000, 15 (01): : 169 - 175
  • [25] Discrete breathers in nonlinear network models of proteins
    Juanico, B.
    Sanejouand, Y. -H.
    Piazza, F.
    De Los Rios, P.
    PHYSICAL REVIEW LETTERS, 2007, 99 (23)
  • [26] Dynamics of breathers in discrete nonlinear Schrodinger models
    Johansson, M
    Aubry, S
    Gaididei, YB
    Christiansen, PL
    Rasmussen, KO
    PHYSICA D, 1998, 119 (1-2): : 115 - 124
  • [27] Interaction of discrete breathers with electrons in nonlinear lattices
    Flach, S
    Kladko, K
    PHYSICAL REVIEW B, 1996, 53 (17): : 11531 - 11534
  • [28] Existence of breathers for discrete nonlinear Schrodinger equations
    Shi, Haiping
    Zhang, Yuanbiao
    APPLIED MATHEMATICS LETTERS, 2015, 50 : 111 - 118
  • [29] Discrete breathers in a nonlinear polarizability model of ferroelectrics
    Hoogeboom, C.
    Kevrekidis, P. G.
    Saxena, A.
    Bishop, A. R.
    PHYSICAL REVIEW E, 2012, 86 (06):
  • [30] Large systems of discrete breathers in graphene
    Baimova, J. A.
    LETTERS ON MATERIALS-PIS MA O MATERIALAKH, 2016, 6 (01): : 31 - 33