Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China

被引:178
|
作者
Wang, Pengfei [1 ]
Guo, Hao [1 ]
Hu, Jianlin [2 ]
Kota, Sri Harsha [3 ]
Ying, Qi [4 ]
Zhang, Hongliang [1 ]
机构
[1] Louisiana State Univ, Dept Civil & Environm Engn, Baton Rouge, LA 70803 USA
[2] Nanjing Univ Informat Sci & Technol, Sch Environm Sci & Engn, Collaborat Innovat Ctr Atmospher Environm & Equip, Jiangsu Key Lab Atmospher Environm Monitoring & P, 219 Ningliu Rd, Nanjing 210044, Jiangsu, Peoples R China
[3] Indian Inst Technol Guwahati, Dept Civil Engn, Gauhati 781039, India
[4] Texas A&M Univ, Zachry Dept Civil Engn, College Stn, TX 77843 USA
关键词
Meteorology variation; PM2.5; Ozone; Counteraction; SECONDARY ORGANIC AEROSOL; CRITERIA AIR-POLLUTANTS; PARTICULATE MATTER; SOURCE APPORTIONMENT; CLIMATE-CHANGE; PREMATURE MORTALITY; UNITED-STATES; SURFACE OZONE; WINTER HAZE; NORTH CHINA;
D O I
10.1016/j.scitotenv.2019.01.227
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Tremendous efforts have been made to reduce the severe air pollution in China since 2013. However, the annual and peak fine particulate matter (PM2.5) concentrations during severe events in winter did not always reduce as expected. This is partially due to the inter-annual variation of meteorology, which affects the emission, transport, transformation, and deposition processes of air pollutants. In this study, the responses of PM2.5 and ozone (O-3) concentrations to changes in emission and meteorology from 2013 to 2015 were investigated based on ambient measurements and the Community Multi-Scale Air Quality (CMAQ) model simulations with anthropogenic emissions. It is found that emission reductions in 2014 and 2015 effectively reduced PM2.5 concentrations by 23.9 and 43.5 mu g/m(3), respectively, but was partially counteracted by unfavorable meteorology. The negative effects from unfavorable meteorology were significant in extreme pollution events. For example, in December 2015, unfavorable meteorology caused a great increase (90 mu g/m(3)) of PM2.5 in Beijing. Reduction of primary PM and gaseous precursors led to 13.4 and 16.5 ppb increase of O-3-8 h daily concentrations in the summertime in 2014 and 2015 in comparison of 2013, which was likely caused by the increase of solar actinic flux due to PM reduction. In addition, reduction of nitrogen oxides (NOx) emissions in areas with negative NOx-O-3 sensitivity could lead to an increase of O-3 formation when the reduction of volatile organic compounds (VOCs) was not sufficient. This unintended enhanced O-3 formation could also lead to higher O-3 in downwind areas. This study emphasizes the role of meteorology in pollution control, validates the effectiveness of PM2.5 control measures in China, and highlights the importance of appropriate joint reduction of NOx and VOCs to simultaneously decrease O-3 and PM2.5 for higher air quality. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:297 / 306
页数:10
相关论文
共 50 条
  • [31] Spatial, temporal features and influence of meteorology on PM2.5 and O3 association across urban and rural environments of India
    Krishnaveni, A. Sai
    Madhavan, B. L.
    Jain, Chaithanya D.
    Ratnam, M. Venkat
    ATMOSPHERIC ENVIRONMENT-X, 2024, 22
  • [32] Observed sensitivities of PM2.5 and O3 extremes to meteorological conditions in China and implications for the future
    Zhang, Xiaorui
    Xiao, Xiang
    Wang, Fan
    Brasseur, Guy
    Chen, Siyu
    Wang, Jing
    Gao, Meng
    ENVIRONMENT INTERNATIONAL, 2022, 168
  • [33] Multi-scale analysis of the impacts of meteorology and emissions on PM2.5 and O3 trends at various regions in China from 2013 to 2020 1: Synoptic circulation patterns and pollution
    Gong, Sunling
    Liu, Yilin
    He, Jianjun
    Zhang, Lei
    Lu, Shuhua
    Zhang, Xiaoye
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 815
  • [34] Co-Occurrence of Surface O3, PM2.5 Pollution, and Tropical Cyclones in China
    Shao, Min
    Yang, Jianbo
    Wang, Jinmei
    Chen, Pulong
    Liu, Baoshuang
    Dai, Qili
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2022, 127 (14)
  • [35] Contributions of meteorology and anthropoaenic emissions to the trends in winter PM2.5 in eastern China 2013-2018
    Wu, Yanxing
    Liu, Run
    Li, Yanzi
    Dong, Junjie
    Huang, Zhijiong
    Zheng, Junyu
    Liu, Shaw Chen
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2022, 22 (18) : 11945 - 11955
  • [36] Influence of urban forest size and form on PM2.5 and O3 concentrations: A perspective of size threshold
    Chen, Xin
    Wei, Fang
    AIR QUALITY ATMOSPHERE AND HEALTH, 2025,
  • [37] Coordinated Control of PM2.5 and O3 in Hangzhou Based on SOA and O3 Formation Potential
    Lin X.
    Yan R.-C.
    Jin J.-J.
    Xu K.-E.
    Huanjing Kexue/Environmental Science, 2022, 43 (04): : 1799 - 1807
  • [38] Responses of PM2.5 pollution to urbanization in China
    Wang, Xiaomin
    Tian, Guanghui
    Yang, Dongyang
    Zhang, Wenxin
    Lu, Debin
    Liu, Zhongmei
    ENERGY POLICY, 2018, 123 : 602 - 610
  • [39] Effects of Ambient O3 on Respiratory Mortality, Especially the Combined Effects of PM2.5 and O3
    Deng, Ye
    Wang, Junlong
    Sun, Li
    Wang, Yue
    Chen, Jiaoyang
    Zhao, Zhixin
    Wang, Tianyun
    Xiang, Yuting
    Wang, Yuting
    Chen, Jiamei
    He, Miao
    TOXICS, 2023, 11 (11)
  • [40] 中国PM2.5与O3协同控制路径
    刘鑫
    史旭荣
    雷宇
    薛文博
    科学通报, 2022, 67 (18) : 2089 - 2099