Machine learning trained with quantitative susceptibility mapping to detect mild cognitive impairment in Parkinson's disease

被引:17
|
作者
Shibata, Haruto [1 ,2 ]
Uchida, Yuto [1 ,3 ]
Inui, Shohei [4 ]
Kan, Hirohito [5 ]
Sakurai, Keita [6 ]
Oishi, Naoya [7 ]
Ueki, Yoshino [8 ]
Oishi, Kenichi [9 ]
Matsukawa, Noriyuki [3 ]
机构
[1] Toyokawa City Hosp, Dept Neurol, Toyokawa, Aichi, Japan
[2] Nagoya City Univ, Dept Neurol, East Med Ctr, Nagoya, Aichi, Japan
[3] Nagoya City Univ, Dept Neurol, Grad Sch Med Sci, Nagoya, Aichi, Japan
[4] Univ Tokyo, Grad Sch Med, Dept Radiol, Tokyo, Japan
[5] Nagoya Univ, Dept Integrated Hlth Sci, Grad Sch Med, Nagoya, Aichi, Japan
[6] Natl Ctr Geriatr & Gerontol, Dept Radiol, Obu, Aichi, Japan
[7] Kyoto Univ, Med Innovat Ctr, Grad Sch Med, Kyoto, Japan
[8] Nagoya City Univ, Dept Rehabil Med, Grad Sch Med Sci, Nagoya, Aichi, Japan
[9] Johns Hopkins Univ, Sch Med, Dept Radiol, Baltimore, MD 21205 USA
基金
日本学术振兴会;
关键词
Machine learning; Mild cognitive impairment; MRI; Parkinson 's disease; Quantitative susceptibility mapping; DIAGNOSTIC-CRITERIA; BRAIN IRON; DEMENTIA; DECLINE; MULTICENTER; ATLAS;
D O I
10.1016/j.parkreldis.2021.12.004
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Cognitive decline is commonly observed in Parkinson's disease (PD). Identifying PD with mild cognitive impairment (PD-MCI) is crucial for early initiation of therapeutic interventions and preventing cognitive decline. Objective: We aimed to develop a machine learning model trained with magnetic susceptibility values based on the multi-atlas label-fusion method to classify PD without dementia into PD-MCI and normal cognition (PD-CN). Methods: This multicenter observational cohort study retrospectively reviewed 61 PD-MCI and 59 PD-CN cases for the internal validation cohort and 22 PD-MCI and 21 PD-CN cases for the external validation cohort. The multi-atlas method parcellated the quantitative susceptibility mapping (QSM) images into 20 regions of interest and extracted QSM-based magnetic susceptibility values. Random forest, extreme gradient boosting, and light gradient boosting were selected as machine learning algorithms. Results: All classifiers demonstrated substantial performances in the classification task, particularly the random forest model. The accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve for this model were 79.1%, 77.3%, 81.0%, and 0.78, respectively. The QSM values in the caudate nucleus, which were important features, were inversely correlated with the Montreal Cognitive Assessment scores (right caudate nucleus: r = -0.573, 95% CI: -0.801 to -0.298, p = 0.003; left caudate nucleus: r = -0.659, 95% CI: -0.894 to -0.392, p < 0.001). Conclusions: Machine learning models trained with QSM values successfully classified PD without dementia into PD-MCI and PD-CN groups, suggesting the potential of QSM values as an auxiliary biomarker for early evaluation of cognitive decline in patients with PD.
引用
收藏
页码:104 / 110
页数:7
相关论文
共 50 条
  • [21] Mild Cognitive Impairment in Parkinson's Disease
    Kim, Jae Woo
    Jo, Hee Young
    Park, Min Jeong
    Cheon, Sang-Myung
    JOURNAL OF MOVEMENT DISORDERS, 2008, 1 (01) : 19 - 25
  • [22] Mild cognitive impairment in Parkinson's disease
    Adler, Charles H.
    PARKINSONISM & RELATED DISORDERS, 2009, 15 : S81 - S82
  • [23] Assessing Mild Cognitive Impairment in Parkinson's Disease by Magnetic Resonance Quantitative Susceptibility Mapping Combined Voxel-Wise and Radiomic Analysis
    Zhao, Yi
    Qu, Hang
    Wang, Wei
    Liu, Jiangbing
    Pan, Yu
    Li, Zheng
    Xu, Gang
    Hu, Chunhong
    EUROPEAN NEUROLOGY, 2022, 85 (04) : 280 - 290
  • [24] Dementia, Mild Cognitive Impairment and Quantitative EEG in Patients With Parkinson's Disease
    Fonseca, L. C.
    Tedrus, G. M. A. S.
    Letro, G. H.
    Bossoni, A. S.
    CLINICAL EEG AND NEUROSCIENCE, 2009, 40 (03) : 168 - 172
  • [25] Is all cognitive impairment in Parkinson’s disease “mild cognitive impairment”?
    Saül Martínez-Horta
    Jaime Kulisevsky
    Journal of Neural Transmission , 2011, 118 : 1185 - 1190
  • [26] Is all cognitive impairment in Parkinson's disease "mild cognitive impairment"?
    Martinez-Horta, Sauel
    Kulisevsky, Jaime
    JOURNAL OF NEURAL TRANSMISSION, 2011, 118 (08) : 1185 - 1190
  • [27] Incidence of Mild Cognitive Impairment and Dementia in Parkinson's Disease: The Parkinson's Disease Cognitive Impairment Study
    Nicoletti, Alessandra
    Luca, Antonina
    Baschi, Roberta
    Cicero, Calogero Edoardo
    Mostile, Giovanni
    Davi, Marco
    Pilati, Laura
    Restivo, Vincenzo
    Zappia, Mario
    Monastero, Roberto
    FRONTIERS IN AGING NEUROSCIENCE, 2019, 11
  • [28] Quantitative Susceptibility Mapping in Parkinson's Disease
    Langkammer, Christian
    Pirpamer, Lukas
    Seiler, Stephan
    Deistung, Andreas
    Schweser, Ferdinand
    Franthal, Sebastian
    Homayoon, Nina
    Katschnig-Winter, Petra
    Koegl-Wallner, Mariella
    Pendl, Tamara
    Stoegerer, Eva Maria
    Wenzel, Karoline
    Fazekas, Franz
    Ropele, Stefan
    Reichenbach, Jurgen Rainer
    Schmidt, Reinhold
    Schwingenschuh, Petra
    PLOS ONE, 2016, 11 (09):
  • [29] Mild cognitive impairment in Parkinson’s disease: the Parkinson’s disease cognitive study (PACOS)
    Roberto Monastero
    Calogero Edoardo Cicero
    Roberta Baschi
    Marco Davì
    Antonina Luca
    Vincenzo Restivo
    Chiara Zangara
    Brigida Fierro
    Mario Zappia
    Alessandra Nicoletti
    Journal of Neurology, 2018, 265 : 1050 - 1058
  • [30] Mild cognitive impairment in Parkinson's disease: the Parkinson's disease cognitive study (PACOS)
    Monastero, Roberto
    Cicero, Calogero Edoardo
    Baschi, Roberta
    Davi, Marco
    Luca, Antonina
    Restivo, Vincenzo
    Zangara, Chiara
    Fierro, Brigida
    Zappia, Mario
    Nicoletti, Alessandra
    JOURNAL OF NEUROLOGY, 2018, 265 (05) : 1050 - 1058