Modeling the Growth Kinetics of Anodic TiO2 Nanotubes

被引:27
|
作者
Apolinario, A. [1 ,2 ]
Quiterio, P. [1 ,2 ]
Sousa, C. T. [1 ,2 ]
Ventura, J. [1 ,2 ]
Sousa, J. B. [1 ,2 ]
Andrade, L. [3 ]
Mendes, A. M. [3 ]
Araujo, J. P. [1 ,2 ]
机构
[1] Univ Porto, Fac Ciencias, IFIMUP, P-4169007 Oporto, Portugal
[2] Univ Porto, Fac Ciencias, IN Inst Nanosci & Nanotechnol, Dep Fis & Astron, P-4169007 Oporto, Portugal
[3] Fac Engn, LEPABE Lab Proc Engn Environm Biotechnol & Energy, Dept Engn Quim, P-4200465 Oporto, Portugal
来源
关键词
POROUS ALUMINA; FABRICATION; ANODIZATION; ARRAYS; TITANIUM;
D O I
10.1021/jz502380b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The fundamental understanding of the barrier layer (delta(b)) growth in TiO2 nanotubes (NTs) is here established and compared with the classical metal oxidation theory from Mott and Cabrera. The role of delta(b) in the anodization of TiO2 NTs under different applied potentials and times was analyzed using scanning transmission electron microscopy (STEM). Contrary to the well-known case of anodic aluminum oxide, we found that delta(b) of TiO2 NTs progressively grows over time due to the nonsteady anodization regime. We then establish a relation between the phenomenological growth of the barrier layer with time and applied voltage, delta(b)(V,t) using the high-field Mott and Cabrera conduction theory. The developed model was found to be in excellent agreement with the experimental data from both STEM and anodization curves. On the basis of these results, the relationship between delta(b) and the anodization time and potential can now be quantitatively understood.
引用
收藏
页码:845 / 851
页数:7
相关论文
共 50 条
  • [41] Preparation of TiO2 nanotubes array on Ti meshes by anodic oxidation
    Wang, X.-Q. (xqwang@mail.neuq.edu.cn), 1600, Chinese Ceramic Society, Baiwanzhuang, Beijing, 100831, China (42):
  • [42] Tailoring morphology, structure and photoluminescence properties of anodic TiO2 nanotubes
    Einollahzadeh-Samadi, M.
    Dariani, R. S.
    Paul, A.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2017, 50 : 1133 - 1143
  • [43] Anodic TiO2 nanotubes: A promising material for energy conversion and storage
    Galstyan, Vardan
    Macak, Jan M.
    Djenizian, Thierry
    APPLIED MATERIALS TODAY, 2022, 29
  • [44] In Vivo Evaluation of Anodic TiO2 Nanotubes: An Experimental Study in the Pig
    von Wilmowsky, Cornelius
    Bauer, Sebastian
    Lutz, Rainer
    Meisel, Mark
    Neukam, Friedrich Wilhelm
    Toyoshima, Takeshi
    Schmuki, Patrik
    Nkenke, Emeka
    Schlegel, Karl Andreas
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2009, 89B (01) : 165 - 171
  • [45] Morphological Control of Anodic TiO2 Nanotubes by the Modulation of Applied Potential
    Lee, So-Hee
    Kim, Hyun Sik
    Ahn, Kwang-soon
    Kang, Soon Hyung
    CHEMISTRY LETTERS, 2013, 42 (07) : 758 - 760
  • [46] Evaluation of the Titanium Substrate Effect on the Morphology of Anodic TiO2 Nanotubes
    Zhang, Mengmeng
    Zhou, Xin
    Wang, Chunrui
    Chen, Zhenhua
    Li, Hui
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2021, 10 (08)
  • [47] Enhanced charge storage by the electrocatalytic effect of anodic TiO2 nanotubes
    Zhang, Guoge
    Huang, Chuanjun
    Zhou, Limin
    Ye, Lin
    Li, Wenfang
    Huang, Haitao
    NANOSCALE, 2011, 3 (10) : 4174 - 4181
  • [48] Anodizing Process of Titanium and Formation Mechanism of Anodic TiO2 Nanotubes
    Wang Jing
    Fan Haowen
    Zhang He
    Chen Qun
    Liu Yi
    Ma Weihua
    PROGRESS IN CHEMISTRY, 2016, 28 (2-3) : 284 - 295
  • [49] Anodic TiO2 nanotubes: Influence of top morphology on their photocatalytic performance
    Mazzarolo, Alice
    Lee, Kiyoung
    Vicenzo, Antonello
    Schmuki, Patrik
    ELECTROCHEMISTRY COMMUNICATIONS, 2012, 22 : 162 - 165
  • [50] Self-Organized Regular Arrays of Anodic TiO2 Nanotubes
    Shin, Yeonmi
    Lee, Seonghoon
    NANO LETTERS, 2008, 8 (10) : 3171 - 3173