Robust chaos in smooth unimodal maps

被引:23
|
作者
Andrecut, M [1 ]
Ali, MK [1 ]
机构
[1] Univ Lethbridge, Dept Phys, Lethbridge, AB T1K 3M4, Canada
来源
PHYSICAL REVIEW E | 2001年 / 64卷 / 02期
关键词
D O I
10.1103/PhysRevE.64.025203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Robust chaos is defined by the absence of periodic windows and coexisting attractors in some neighborhood of the parameter space. It has been conjectured that robust chaos cannot occur in smooth systems [E. Barreto, B. Hunt, and C. Grebogi, Phys. Rev. Lett. 78, 4561 (1997); 80, 3049 (1998)]. Contrary to this conjecture, we describe a general procedure for generating robust chaos in smooth unimodal maps.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Smooth TA-maps with Robust Shadowing Are Axiom A
    Moosavi, Seyed Mohsen
    Tajbakhsh, Khosro
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (01) : 43 - 53
  • [42] Smooth TA-maps with Robust Shadowing Are Axiom A
    Seyed Mohsen Moosavi
    Khosro Tajbakhsh
    Journal of Dynamical and Control Systems, 2023, 29 : 43 - 53
  • [43] Attractors for unimodal quasiperiodically forced maps
    Alseda, Lluis
    Misiurewicz, Michal
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2008, 14 (10-11) : 1175 - 1196
  • [44] Minimal Cantor systems and unimodal maps
    Bruin, H
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2003, 9 (3-4) : 305 - 318
  • [45] Local Critical Perturbations of Unimodal Maps
    Blokh, Alexander
    Misiurewicz, Michal
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 289 (02) : 765 - 776
  • [46] Generalized Vertigo Maps - A New Family of Chaotic Maps with Robust Chaos but Without Fixed Points
    Lawnik, Marcin
    Moysis, Lazaros
    Garcia-Grimaldo, Claudio
    Campos-Canton, Eric
    Fragulis, George F.
    Volos, Christos
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2025,
  • [47] Universal visibility patterns of unimodal maps
    Nuno, Juan Carlos
    Munoz, Francisco J.
    CHAOS, 2020, 30 (06)
  • [48] Countable limit sets of unimodal maps
    Inaba, T.
    Kano, Y.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2010, 16 (03) : 319 - 328
  • [49] Generalized β-transformations and the entropy of unimodal maps
    Thompson, Daniel J.
    COMMENTARII MATHEMATICI HELVETICI, 2017, 92 (04) : 777 - 800
  • [50] Return time statistics for unimodal maps
    Bruin, H
    Vaienti, S
    FUNDAMENTA MATHEMATICAE, 2003, 176 (01) : 77 - 94