Short Heat Treatments for the F357 Aluminum Alloy Processed by Laser Powder Bed Fusion

被引:9
|
作者
Vanzetti, Matteo [1 ,2 ]
Virgillito, Enrico [1 ,2 ]
Aversa, Alberta [1 ]
Manfredi, Diego [1 ,2 ]
Bondioli, Federica [1 ,3 ]
Lombardi, Mariangela [1 ]
Fino, Paolo [1 ]
机构
[1] Politecn Torino, Dept Appl Sci & Technol DISAT, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Ist Italiano Tecnol, Ctr Sustainable Future Technol IIT Polito, Via Livorno 60, I-10124 Turin, Italy
[3] Consorzio Interuniv Nazl Sci & Tecnol Mat INSTM, Via G Giusti 9, I-50121 Florence, Italy
关键词
additive manufacturing; laser powder bed fusion; aluminum; f357; heat treatments; microstructure; mechanical properties; MECHANICAL-PROPERTIES; MICROSTRUCTURE; FATIGUE;
D O I
10.3390/ma14206157
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Conventionally processed precipitation hardening aluminum alloys are generally treated with T6 heat treatments which are time-consuming and generally optimized for conventionally processed microstructures. Alternatively, parts produced by laser powder bed fusion (L-PBF) are characterized by unique microstructures made of very fine and metastable phases. These peculiar features require specifically optimized heat treatments. This work evaluates the effects of a short T6 heat treatment on L-PBF AlSi7Mg samples. The samples underwent a solution step of 15 min at 540 degrees C followed by water quenching and subsequently by an artificial aging at 170 degrees C for 2-8 h. The heat treated samples were characterized from a microstructural and mechanical point of view and compared with both as-built and direct aging (DA) treated samples. The results show that a 15 min solution treatment at 540 degrees C allows the dissolution of the very fine phases obtained during the L-PBF process; the subsequent heat treatment at 170 degrees C for 6 h makes it possible to obtain slightly lower tensile properties compared to those of the standard T6. With respect to the DA samples, higher elongation was achieved. These results show that this heat treatment can be of great benefit for the industry.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] The Build Orientation Dependency of NiTi Shape Memory Alloy Processed by Laser Powder Bed Fusion
    Safaei, Keyvan
    Andani, Nasrin Taheri
    Nematollahi, Mohammadreza
    Benafan, Othmane
    Poorganji, Behrang
    Elahinia, Mohammad
    SHAPE MEMORY AND SUPERELASTICITY, 2022, 8 (04) : 265 - 276
  • [32] Gradient heterostructured laser-powder bed fusion processed CoCrFeMnNi high entropy alloy
    Karthik, G. M.
    Kim, Yongju
    Kim, Eun Seong
    Zargaran, Alireza
    Sathiyamoorthi, Praveen
    Park, Jeong Min
    Jeong, Sang Guk
    Gu, Gang Hee
    Amanov, Auezhan
    Ungar, Tamas
    Kim, Hyoung Seop
    ADDITIVE MANUFACTURING, 2022, 59
  • [33] The Build Orientation Dependency of NiTi Shape Memory Alloy Processed by Laser Powder Bed Fusion
    Keyvan Safaei
    Nasrin Taheri Andani
    Mohammadreza Nematollahi
    Othmane Benafan
    Behrang Poorganji
    Mohammad Elahinia
    Shape Memory and Superelasticity, 2022, 8 : 265 - 276
  • [34] Laser powder bed fusion of high strength aluminum
    Mertens, Raya
    Baert, Lise
    Vanmeensel, Kim
    Van Hooreweder, Brecht
    Material Design and Processing Communications, 2021, 3 (05):
  • [35] High-strength aluminum alloy processed by micro laser powder bed fusion (μ-LPBF): Coordination of laser formability, microstructure evolution, and mechanical properties
    Liu, He
    Gu, Dongdong
    Shi, Keyu
    Zhang, Han
    Zhang, Yijuan
    Li, Linxuan
    Li, Jingyang
    Qi, Junfeng
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2024, 332
  • [36] A Tailored AlSiMg Alloy for Laser Powder Bed Fusion
    Knoop, Daniel
    Lutz, Andreas
    Mais, Bernhard
    von Hehl, Axel
    METALS, 2020, 10 (04)
  • [37] Effect of powder reuse on physical, chemical and toxicological properties of 6061-Zr aluminum alloy processed by Laser Powder Bed Fusion (L-PBF)☆
    Beal, Maxime
    Azzougagh, Mohamed-Nour
    Pourchez, Jeremie
    Bertrand, Philippe
    Cabrol, Elodie
    Si-Mohand, Hocine
    Keller, Francois-Xavier
    MATERIAUX & TECHNIQUES, 2023, 111 (01):
  • [38] Effect of heat treatments on microstructure and properties of CuCrZr produced by laser-powder bed fusion
    Wallis, Christopher
    Buchmayr, Bruno
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 744 : 215 - 223
  • [39] Elimination of extraordinarily high cracking susceptibility of aluminum alloy fabricated by laser powder bed fusion
    Hyer, Holden
    Zhou, Le
    Park, Sharon
    Huynh, Thinh
    Mehta, Abhishek
    Thapliyal, Saket
    Mishra, Rajiv S.
    Sohn, Yongho
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 103 : 50 - 58
  • [40] Elimination of extraordinarily high cracking susceptibility of aluminum alloy fabricated by laser powder bed fusion
    Holden Hyer
    Le Zhou
    Sharon Park
    Thinh Huynh
    Abhishek Mehta
    Saket Thapliyal
    Rajiv S.Mishra
    Yongho Sohn
    JournalofMaterialsScience&Technology, 2022, 103 (08) : 50 - 58