On the Mittag-Leffler Stability of Impulsive Fractional Solow-Type Models

被引:1
|
作者
Stamova, Ivanka M. [1 ]
Stamov, Gani Tr. [1 ]
机构
[1] Univ Texas San Antonio, Dept Math, One UTSA Circle, San Antonio, TX 78249 USA
关键词
Solow-type models; fractional derivatives; impulsive control; stability; DIFFERENTIAL-EQUATIONS; FINANCIAL-SYSTEM; GROWTH; EXISTENCE; ORDER; SYNCHRONIZATION; POPULATION; DYNAMICS; DELAY;
D O I
10.1515/ijnsns-2016-0027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, we introduce fractional-order Solow-type models as a new tool for modeling and analysis in mathematical finance. Sufficient conditions for the Mittag-Leffler stability of their states are derived. The main advantages of the proposed approach are using of fractional-order derivatives, whose nonlocal property makes the fractional calculus a suitable tool for modeling actual financial systems as well as using of impulsive perturbations which give an opportunity to control the dynamic behavior of the model. The modeling approach proposed in this article can be applied to investigate macroeconomic systems.
引用
收藏
页码:315 / 325
页数:11
相关论文
共 50 条
  • [31] Mittag–Leffler Stability for Impulsive Caputo Fractional Differential Equations
    R. Agarwal
    S. Hristova
    D. O’Regan
    Differential Equations and Dynamical Systems, 2021, 29 : 689 - 705
  • [32] MITTAG-LEFFLER STABILITY FOR A TIMOSHENKO PROBLEM
    Tatar, Nasser-Eddine
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2021, 31 (02) : 219 - 232
  • [33] Mittag-Leffler stability of fractional-order Hopfield neural networks
    Zhang, Shuo
    Yu, Yongguang
    Wang, Hu
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2015, 16 : 104 - 121
  • [34] MITTAG-LEFFLER INPUT STABILITY OF FRACTIONAL DIFFERENTIAL EQUATIONS AND ITS APPLICATIONS
    Sene, Ndolane
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (03): : 867 - 880
  • [35] ON THE MITTAG-LEFFLER STABILITY OF Q-FRACTIONAL NONLINEAR DYNAMICAL SYSTEMS
    Jarad, Fahd
    Abdeljawad, Thabet
    Gundogdu, Emrah
    Baleanu, Dumitru
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2011, 12 (04): : 309 - 314
  • [36] Mittag-Leffler Stability of Homogeneous Fractional-Order Systems With Delay
    Lien, Nguyen Thi
    Hien, Le Van
    Thang, Nguyen Nhu
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 3243 - 3248
  • [37] EXISTENCE AND STABILITY RESULTS OF FRACTIONAL DIFFERENTIAL EQUATIONS MITTAG-LEFFLER KERNEL
    Abbas, Ahsan
    Mehmood, Nayyar
    Akgul, Ali
    Amacha, Inas
    Abdeljawad, Thabet
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (07N08)
  • [38] Weakness and Mittag-Leffler Stability of Solutions for Time-Fractional Keller-Segel Models
    Zhou, Y.
    Manimaran, J.
    Shangerganesh, L.
    Debbouche, A.
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (7-8) : 753 - 761
  • [39] Mittag-Leffler function and fractional differential equations
    Katarzyna Górska
    Ambra Lattanzi
    Giuseppe Dattoli
    Fractional Calculus and Applied Analysis, 2018, 21 : 220 - 236
  • [40] Fractional Calculus of a Unified Mittag-Leffler Function
    Prajapati, J. C.
    Nathwani, B. V.
    UKRAINIAN MATHEMATICAL JOURNAL, 2015, 66 (08) : 1267 - 1280