STRATEGIES FOR ONLINE INFERENCE OF MODEL-BASED CLUSTERING IN LARGE AND GROWING NETWORKS

被引:19
|
作者
Zanghi, Hugo [1 ]
Picard, Franck [2 ]
Miele, Vincent [2 ]
Ambroise, Christophe [3 ]
机构
[1] Exalead, F-75008 Paris, France
[2] UCB Lyon 1, Lab Biometrie & Biol Evolut, F-69622 Villeurbanne, France
[3] CNRS, INRA, Lab Stat & Genome, UEVE 1152,UMR 8071, F-91000 Evry, France
来源
ANNALS OF APPLIED STATISTICS | 2010年 / 4卷 / 02期
关键词
Graph clustering; EM Algorithms; online strategies; web graph structure analysis; MIXED MEMBERSHIP; EM ALGORITHM; MIXTURE; CONVERGENCE; PREDICTION;
D O I
10.1214/10-AOAS359
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we adapt online estimation strategies to perform model-based clustering on large networks. Our work focuses on two algorithms, the first based on the SAEM algorithm, and the second on variational methods. These two strategies are compared with existing approaches on simulated and real data. We use the method to decipher the connexion structure of the political websphere during the US political campaign in 2008. We show that our online EM-based algorithms offer a good trade-off between precision and speed, when estimating parameters for mixture distributions in the context of random graphs.
引用
收藏
页码:687 / 714
页数:28
相关论文
共 50 条
  • [21] Model-based Poisson co-clustering for Attributed Networks
    Riverain, Paul
    Fossier, Simon
    Nadif, Mohamed
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 703 - 710
  • [22] Finite mixture-of-gamma distributions: estimation, inference, and model-based clustering
    Derek S. Young
    Xi Chen
    Dilrukshi C. Hewage
    Ricardo Nilo-Poyanco
    Advances in Data Analysis and Classification, 2019, 13 : 1053 - 1082
  • [23] Finite mixture-of-gamma distributions: estimation, inference, and model-based clustering
    Young, Derek S.
    Chen, Xi
    Hewage, Dilrukshi C.
    Nilo-Poyanco, Ricardo
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2019, 13 (04) : 1053 - 1082
  • [24] MODEL-BASED INFERENCE IN CHARME
    PESCH, E
    DREXL, A
    KOLEN, A
    OR SPEKTRUM, 1994, 16 (03) : 193 - 202
  • [25] An empirical Bayesian approach for model-based inference of cellular signaling networks
    David J Klinke
    BMC Bioinformatics, 10
  • [26] An empirical Bayesian approach for model-based inference of cellular signaling networks
    Klinke, David J., II
    BMC BIOINFORMATICS, 2009, 10
  • [27] Online one pass clustering of data streams based on growing neural gas and fuzzy inference systems
    Mahmoudabadi, Ali
    Kuchaki Rafsanjani, Marjan
    Javidi, Mohammad Masoud
    EXPERT SYSTEMS, 2021, 38 (07)
  • [28] Model-based clustering with envelopes
    Wang, Wenjing
    Zhang, Xin
    Mai, Qing
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 82 - 109
  • [29] Challenges in model-based clustering
    Melnykov, Volodymyr
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2013, 5 (02): : 135 - 148
  • [30] Model-based linear clustering
    Yan, Guohua
    Welch, William J.
    Zamar, Ruben H.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2010, 38 (04): : 716 - 737