THE SOLVABILITY AND OPTIMAL CONTROLS OF IMPULSIVE FRACTIONAL SEMILINEAR DIFFERENTIAL EQUATIONS

被引:19
|
作者
Li, Xiuwen [1 ,4 ]
Liu, Zhenhai [2 ,3 ,4 ]
机构
[1] Baise Univ, Dept Math, Baise 533000, Guangxi Provinc, Peoples R China
[2] Guangxi Univ Nationalities, Guangxi Key Lab Univ Optimizat Control & Engn Cal, Nanning 530006, Guangxi Provinc, Peoples R China
[3] Guangxi Univ Nationalities, Coll Sci, Nanning 530006, Guangxi Provinc, Peoples R China
[4] Guangxi Univ Nationalities, Guangxi Key Lab Hybrid Computat & IC Design Anal, Nanning 530006, Guangxi Provinc, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2015年 / 19卷 / 02期
关键词
Impulsive differential equations; Fractional derivatives; Mild solutions; Optimal controls; INTEGRODIFFERENTIAL EQUATIONS; CONTROLLABILITY; INCLUSIONS; UNIQUENESS; EXISTENCE;
D O I
10.11650/tjm.19.2015.3131
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we deal with the impulsive control systems of fractional order and their optimal controls in Banach spaces. We firstly show the existence and uniqueness of mild solutions for a broad class of impulsive fractional infinite dimensional control systems under suitable assumptions. Then by using generally mild conditions of cost functionals, we extend the existence result of optimal controls to the impulsive fractional control systems. Finally, a concrete application is given to illustrate the effectiveness of our main results.
引用
收藏
页码:433 / 453
页数:21
相关论文
共 50 条
  • [41] IMPULSIVE PROBLEMS FOR FRACTIONAL EVOLUTION EQUATIONS AND OPTIMAL CONTROLS IN INFINITE DIMENSIONAL SPACES
    Wang, JinRong
    Zhou, Yong
    Wei, We
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2011, 38 (01) : 17 - 43
  • [42] Solvability and optimal controls of non-instantaneous impulsive stochastic neutral integro-differential equation driven by fractional Brownian motion
    Dhayal, Rajesh
    Malik, Muslim
    Abbas, Syed
    AIMS MATHEMATICS, 2019, 4 (03): : 663 - 683
  • [43] Solvability of Boundary Value Problems for Impulsive Fractional Differential Equations Via Critical Point Theory
    Yanning Wang
    Yongkun Li
    Jianwen Zhou
    Mediterranean Journal of Mathematics, 2016, 13 : 4845 - 4866
  • [44] Solvability of Boundary Value Problems for Impulsive Fractional Differential Equations Via Critical Point Theory
    Wang, Yanning
    Li, Yongkun
    Zhou, Jianwen
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) : 4845 - 4866
  • [45] Existence and stability results for semilinear systems of impulsive stochastic differential equations with fractional Brownian motion
    Blouhi, T.
    Caraballo, T.
    Ouahab, A.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2016, 34 (05) : 792 - 834
  • [46] Existence and uniqueness of solutions to nonlocal-impulsive fractional Cauchy semilinear conformable differential equations
    Herzallah, Mohamed A. E.
    Radwan, Ashraf H. A.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2019, 22 (08) : 1295 - 1310
  • [47] Fractional Differential Equations with Impulsive Effects
    Feckan, Michal
    Danca, Marius-F.
    Chen, Guanrong
    FRACTAL AND FRACTIONAL, 2024, 8 (09)
  • [48] Impulsive fractional functional differential equations
    Guo, Tian Liang
    Jiang, Wei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) : 3414 - 3424
  • [49] A survey on impulsive fractional differential equations
    JinRong Wang
    Michal Fečkan
    Fractional Calculus and Applied Analysis, 2016, 19 : 806 - 831
  • [50] Impulsive Hilfer fractional differential equations
    Ahmed, Hamdy M.
    El-Borai, Mahmoud M.
    El-Owaidy, Hassan M.
    Ghanem, Ahmed S.
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,