The Earth Observation Data for Habitat Monitoring (EODHaM) system

被引:49
|
作者
Lucas, Richard [1 ]
Blonda, Palma [2 ]
Bunting, Peter [3 ]
Jones, Gwawr [3 ]
Inglada, Jordi [4 ]
Arias, Marcela [4 ]
Kosmidou, Vasiliki [5 ]
Petrou, Zisis I. [5 ]
Manakos, Ioannis [5 ]
Adamo, Maria
Charnock, Rebecca - [3 ]
Tarantino, Cristina [2 ]
Mucher, Caspar A. [6 ]
Jongman, Rob H. G. [6 ]
Kramer, Henk [6 ]
Arvor, Damien [7 ]
Honrado, Joao Pradinho [8 ,9 ]
Mairota, Paola [10 ]
机构
[1] Univ New S Wales, Sch Biol Earth & Environm Sci, Ctr Ecosyst Sci, Kensington, NSW 2052, Australia
[2] CNR, Natl Res Council, Inst Intelligent Syst Automat, ISSIA, I-70126 Bari, Italy
[3] Aberystwyth Univ, Inst Geog & Earth Sci, Aberystwyth SY23 3DB, Dyfed, Wales
[4] CESBIO, CNES CNRS UPS IRD, F-31401 Toulouse 9, France
[5] Inst Informat Technol, Ctr Res & Technol Hellas, Thessaloniki 57001, Greece
[6] Wageningen UR, Alterra, NL-6708 PB Wageningen, Netherlands
[7] MTD Montpellier, ESPACE DEV, IRD UMR 228, F-34093 Montpellier, France
[8] InBIO CIBIO, P-4169007 Oporto, Portugal
[9] Univ Porto, Fac Ciencias, Edificio Biol FC4, P-4169007 Oporto, Portugal
[10] Univ Bari, Dept Agroenvironm & Terr Sci, I-70126 Bari, Italy
关键词
Habitat; Land cover; Classification; Monitoring; Remote sensing; VEGETATION; CLASSIFICATIONS; BIODIVERSITY; REFLECTANCE; PHENOLOGY; IMAGERY; MODEL; FIELD;
D O I
10.1016/j.jag.2014.10.011
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
To support decisions relating to the use and conservation of protected areas and surrounds, the EU-funded BIOdiversity multi-SOurce monitoring System: from Space TO Species (BIO_SOS) project has developed the Earth Observation Data for HAbitat Monitoring (EODHaM) system for consistent mapping and monitoring of biodiversity. The EODHaM approach has adopted the Food and Agriculture Organization Land Cover Classification System (LCCS) taxonomy and translates mapped classes to General Habitat Categories (GHCs) from which Annex I habitats (EU Habitats Directive) can be defined. The EODHaM system uses a combination of pixel and object-based procedures. The 1st and 2nd stages use earth observation (EO) data alone with expert knowledge to generate classes according to the LCCS taxonomy (Levels 1 to 3 and beyond). The 3rd stage translates the final LCCS classes into GHCs from which Annex I habitat type maps are derived. An additional module quantifies changes in the LCCS classes and their components, indices derived from earth observation, object sizes and dimensions and the translated habitat maps (i.e., GHCs or Annex I). Examples are provided of the application of EODHaM system elements to protected sites and their surrounds in Italy, Wales (UK), the Netherlands, Greece, Portugal and India. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
引用
收藏
页码:17 / 28
页数:12
相关论文
共 50 条
  • [41] A dynamic earth observation system
    Aloisio, G
    Cafaro, M
    PARALLEL COMPUTING, 2003, 29 (10) : 1357 - 1362
  • [42] Foreword to the Special Issue on Human Settlement Monitoring Using Multiple Earth Observation Data
    Gamba, Paolo
    Stilla, Uwe
    Juergens, Carsten
    Maktav, Derya
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (04) : 1071 - 1075
  • [43] Ecosystem Resilience Monitoring and Early Warning Using Earth Observation Data: Challenges and Outlook
    Bathiany, Sebastian
    Bastiaansen, Robbin
    Bastos, Ana
    Blaschke, Lana
    Lever, Jelle
    Loriani, Sina
    De Keersmaecker, Wanda
    Dorigo, Wouter
    Milenkovic, Milutin
    Senf, Cornelius
    Smith, Taylor
    Verbesselt, Jan
    Boers, Niklas
    SURVEYS IN GEOPHYSICS, 2024,
  • [44] Building an earth observation system
    Lautenbacher, YACC
    GEOTIMES, 2004, 49 (11): : 7 - 7
  • [45] INTERCOMPARISON OF EARTH OBSERVATION DATA AND METHODS FOR FOREST MAPPING IN THE CONTEXT OF FOREST CARBON MONITORING
    Antropov, Oleg
    Miettinen, Jukka
    Hame, Tuomas
    Yrjo, Rauste
    Seitsonen, Lauri
    McRoberts, Ronald E.
    Santoro, Maurizio
    Cartus, Oliver
    Duran, Natalia Malaga
    Herold, Martin
    Pardini, Matteo
    Papathanassiou, Kostas
    Hajnsek, Irena
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5777 - 5780
  • [46] Cloud computing for environmental monitoring using multi-source Earth Observation data
    Yu, Wenyang
    Xie, Jibo
    Li, Guoqing
    2016 FIFTH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2016, : 485 - 488
  • [47] The EL-BIOS Earth Observation Data Cube for Supporting Biodiversity Monitoring in Greece
    Fotakidis, Vangelis
    Roustanis, Themistoklis
    Panayiotou, Konstantinos
    Chrysafis, Irene
    Fitoka, Eleni
    Mallinis, Giorgos
    REMOTE SENSING, 2024, 16 (20)
  • [48] Sino-EU Earth Observation Data to Support the Monitoring and Management of Agricultural Resources
    Pignatti, Stefano
    Casa, Raffaele
    Laneve, Giovanni
    Li, Zhenhai
    Liu, Linyi
    Marzialetti, Pablo
    Mzid, Nada
    Pascucci, Simone
    Silvestro, Paolo Cosmo
    Tolomio, Massimo
    Upreti, Deepak
    Yang, Hao
    Yang, Guijun
    Huang, Wenjiang
    REMOTE SENSING, 2021, 13 (15)
  • [49] Earth observation data sets in monitoring of urbanization and urban heat island of Delhi, India
    Singh, Prafull
    Chaudhuri, Anindita Sarkar
    Verma, Pradipika
    Singh, Vivek Kumar
    Meena, Sansar Raj
    GEOMATICS NATURAL HAZARDS & RISK, 2022, 13 (01) : 1762 - 1779
  • [50] Towards harmonization for monitoring key forest variables in Europe using earth observation data
    Folving, S
    Kennedy, P
    McCormick, N
    NORTH AMERICAN SCIENCE SYMPOSIUM: TOWARD A UNIFIED FRAMEWORK FOR INVENTORYING AND MONITORING FOREST ECOSYSTEM RESOURCES, 1999, (12): : 371 - 380