Artificial gene networks for objective comparison of analysis algorithms

被引:135
|
作者
Mendes, Pedro [1 ]
Sha, Wei [1 ]
Ye, Keying [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Stat, Blacksburg, VA 24061 USA
关键词
D O I
10.1093/bioinformatics/btg1069
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Large-scale gene expression profiling generates data sets that are rich in observed features but poor in numbers of observations. The analysis of such data sets is a challenge that has been object of vigorous research. The algorithms in use for this purpose have been poorly documented and rarely compared objectively, posing a problem of uncertainty about the outcomes of the analyses. One way to objectively test such analysis algorithms is to apply them on computational gene network models for which the mechanisms are completely know. Results: We present a system that generates random artificial gene networks according to well-defined topological and kinetic properties. These are used to run in silico experiments simulating real laboratory microarray experiments. Noise with controlled properties is added to the simulation results several times emulating measurement replicates, before expression ratios are calculated.
引用
收藏
页码:II122 / II129
页数:8
相关论文
共 50 条
  • [31] Screening Feasibility and Comparison of Deep Artificial Neural Networks Algorithms for Classification of Skin Lesions
    Santos, A. P.
    Sousa, R. M.
    Bianchi, M. H. G.
    Cordioli, E.
    Silva, L. A.
    ICBRA 2018: PROCEEDINGS OF 2018 5TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS RESEARCH AND APPLICATIONS, 2018, : 40 - 46
  • [32] Comparison of Econometric Models and Artificial Neural Networks Algorithms for the Prediction of Baltic Dry Index
    Zhang, Xin
    Xue, Tianyuan
    Stanley, H. Eugene
    IEEE ACCESS, 2019, 7 : 1647 - 1657
  • [33] Property Valuations in Times of Crisis. Artificial Neural Networks and Evolutionary Algorithms in Comparison
    Tajani, Francesco
    Morano, Pierluigi
    Locurcio, Marco
    D'Addabbo, Nicola
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2015, PT III, 2015, 9157 : 194 - 209
  • [34] Comparison of space image compression algorithms based on artificial multilayer neural networks and on fractals
    Nazarov, L.E.
    Issledovanie Zemli iz Kosmosa, 2001, (01): : 31 - 40
  • [35] Performance Analysis and Comparison of Four Conventional Multi-objective Optimization Algorithms
    Fu, Maoyang
    Ding, Xudong
    Jia, Biaokun
    Liu, Zhongchen
    Zhao, Xingkai
    Sun, Mei
    PROCEEDINGS OF THE 2021 IEEE 16TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2021), 2021, : 1513 - 1519
  • [36] Comparison of different algorithms for time analysis for CPM schedule networks
    Malyusz, Levente
    Hajdu, Miklos
    Vattai, Zoltan
    AUTOMATION IN CONSTRUCTION, 2021, 127
  • [37] An objective comparison of cell-tracking algorithms
    Ulman, Vladimir
    Maska, Martin
    Magnusson, Klas E. G.
    Ronneberger, Olaf
    Haubold, Carsten
    Harder, Nathalie
    Matula, Pavel
    Matula, Petr
    Svoboda, David
    Radojevic, Miroslav
    Smal, Ihor
    Rohr, Karl
    Jalden, Joakim
    Blau, Helen M.
    Dzyubachyk, Oleh
    Lelieveldt, Boudewijn
    Xiao, Pengdong
    Li, Yuexiang
    Cho, Siu-Yeung
    Dufour, Alexandre C.
    Olivo-Marin, Jean-Christophe
    Reyes-Aldasoro, Constantino C.
    Solis-Lemus, Jose A.
    Bensch, Robert
    Brox, Thomas
    Stegmaier, Johannes
    Mikut, Ralf
    Wolf, Steffen
    Hamprecht, Fred A.
    Esteves, Tiago
    Quelhas, Pedro
    Demirel, Omer
    Malmstrom, Lars
    Jug, Florian
    Tomancak, Pavel
    Meijering, Erik
    Munoz-Barrutia, Arrate
    Kozubek, Michal
    Ortiz-de-Solorzano, Carlos
    NATURE METHODS, 2017, 14 (12) : 1141 - +
  • [38] An objective comparison of cell-tracking algorithms
    Vladimír Ulman
    Martin Maška
    Klas E G Magnusson
    Olaf Ronneberger
    Carsten Haubold
    Nathalie Harder
    Pavel Matula
    Petr Matula
    David Svoboda
    Miroslav Radojevic
    Ihor Smal
    Karl Rohr
    Joakim Jaldén
    Helen M Blau
    Oleh Dzyubachyk
    Boudewijn Lelieveldt
    Pengdong Xiao
    Yuexiang Li
    Siu-Yeung Cho
    Alexandre C Dufour
    Jean-Christophe Olivo-Marin
    Constantino C Reyes-Aldasoro
    Jose A Solis-Lemus
    Robert Bensch
    Thomas Brox
    Johannes Stegmaier
    Ralf Mikut
    Steffen Wolf
    Fred A Hamprecht
    Tiago Esteves
    Pedro Quelhas
    Ömer Demirel
    Lars Malmström
    Florian Jug
    Pavel Tomancak
    Erik Meijering
    Arrate Muñoz-Barrutia
    Michal Kozubek
    Carlos Ortiz-de-Solorzano
    Nature Methods, 2017, 14 : 1141 - 1152
  • [39] Comparison of LLE and PCA Algorithms for Gene Expression Data Analysis
    Chen, Xiaozhou
    Yang, Fan
    Li, Huamei
    Chen, Junhua
    APPLIED SCIENCE, MATERIALS SCIENCE AND INFORMATION TECHNOLOGIES IN INDUSTRY, 2014, 513-517 : 378 - 381
  • [40] Sensitivity versus accuracy in ensemble models of Artificial Neural Networks from Multi-objective Evolutionary Algorithms
    Juan Carlos Fernández
    Manuel Cruz-Ramírez
    César Hervás-Martínez
    Neural Computing and Applications, 2018, 30 : 289 - 305