A Special FCL Clustering and Its Application to Sparse Blind Source Separation

被引:1
|
作者
Tong, Yu [1 ]
Zhang, Yunjie [1 ]
机构
[1] Dalian Maritime Univ, Dept Math, Dalian 116026, Peoples R China
来源
CEIS 2011 | 2011年 / 15卷
关键词
FCL; blind source separation; underdetermined sparse signal; REPRESENTATION; SUBSTRUCTURE;
D O I
10.1016/j.proeng.2011.08.436
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fuzzy c-Lines (FCL) algorithm is a linear fuzzy clustering algorithm and is constructed to treat linear dates and capture linear substructures. This paper considers a special FCL clustering algorithm, then based on the special FCL clustering algorithm and generalized inverse of vectors, proposes a new two-step clustering algorithms in order to solve the underdetermined sparse blind signal separation. The proposed algorithm provides a new approach for mixing matrix estimation and source signals separation, and simulation results support the validity of the algorithm. (C) 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of [CEIS 2011]
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Optimal sparse representations for blind source separation and blind deconvolution: A learning approach
    Bronstein, MM
    Bronstein, AM
    Zibulevsky, M
    Zeevi, YY
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 1815 - 1818
  • [42] Sparse source separation based on simultaneous clustering of source locational and spectral features
    Araki, Shoko
    Nakatani, Tomohiro
    Sawada, Hiroshi
    ACOUSTICAL SCIENCE AND TECHNOLOGY, 2011, 32 (04) : 161 - 164
  • [43] A statistically sparse decompositron principle for underdetermined blind source separation
    Xiao, M
    Xie, SL
    Fu, YL
    ISPACS 2005: PROCEEDINGS OF THE 2005 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS, 2005, : 165 - 168
  • [44] A hierarchical approach for sparse source Blind Signal Separation problem
    Syed, Mujahid N.
    Georgiev, Pando G.
    Pardalos, Panos M.
    COMPUTERS & OPERATIONS RESEARCH, 2014, 41 : 386 - 398
  • [45] Sparse Kernel Independent Component Analysis for Blind Source Separation
    Khan, Asif
    Kim, Intaek
    JOURNAL OF THE OPTICAL SOCIETY OF KOREA, 2008, 12 (03) : 121 - 125
  • [46] Decentralized modal identification using sparse blind source separation
    Sadhu, A.
    Hazra, B.
    Narasimhan, S.
    Pandey, M. D.
    SMART MATERIALS AND STRUCTURES, 2011, 20 (12)
  • [47] Sparse Independent Component Analysis with Interpolation for Blind Source Separation
    Khan, Asif
    Kim, Intaek
    2009 2ND INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL AND COMMUNICATION, 2009, : 29 - 34
  • [48] Blind Audiovisual Source Separation Based on Sparse Redundant Representations
    Casanovas, Anna Llagostera
    Monaci, Gianluca
    Vandergheynst, Pierre
    Gribonval, Remi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2010, 12 (05) : 358 - 371
  • [49] Sparse component analysis and blind source separation of underdetermined mixtures
    Georgiev, P
    Theis, F
    Cichocki, A
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (04): : 992 - 996
  • [50] Postnonlinear overcomplete blind source separation using sparse sources
    Theis, FJ
    Amari, S
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, 2004, 3195 : 718 - 725