Microstructure evolution and compressive properties of a low carbon-low alloy steel processed by warm rolling and subsequent annealing

被引:9
|
作者
Gao, Chong [1 ]
Wang, Yingchun [1 ,2 ]
Qiu, Xuyangfan [1 ]
Chi, Hongxiao
Zhou, Jian [3 ]
Cai, Hongnian [1 ,2 ,3 ]
Cheng, Xingwang [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Natl Key Lab Sci & Technol Mat Shock & Impact, Beijing 100081, Peoples R China
[3] Cent iron & Steel Res Inst, Res Inst Special Steel, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Low carbon steel; Warm rolling; Annealing; Microstructure evolution; Compressive properties; Strengthening mechanism; MEDIUM-MN STEEL; MECHANICAL-PROPERTIES; STAINLESS-STEEL; PIPELINE STEEL; STRAIN-RATE; TEMPERATURE; SENSITIVITY; STRENGTH; DISSOLUTION; CEMENTITE;
D O I
10.1016/j.matchar.2022.112237
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A low carbon-low alloy steel was processed by warm rolling with reductions range from-30% to-70% followed by annealing at 450 & DEG;C. Then, the microstructural evolution was characterized by Field Emission Scanning Electron Microscopy (FE-SEM), Electron Backscatter Diffraction (EBSD), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD) and compressive testing under strain rates of 1.0 x 10(- 3)-2.0 x 10(3) s(-1) was carried out. Microscopy analyses showed that ultrafine-grained structures with high-density dislocations and more and finer M3C carbides by comparison with the tempered steel were achieved after warm rolling. Subse-quent annealing promoted the further precipitation of finer carbides and led to dislocation recovery as well as a slight coarsening of grains. Compressive testing results indicated that the yield strengths of the warm rolled steels at different strain rates were significantly increased by-40-70% compared with the as-received sample, which was mainly attributed to a combination of dislocation strengthening, grain boundary strengthening and pre-cipitation strengthening. After annealing, the yield strength decreased slightly due to a dislocation recovery and a slight increment of the grain sizes. In addition, the influence of microstructure evolutions including dislocation densities, grain sizes and carbide precipitations during warm rolling and subsequent annealing on the strain rate dependence of strength for steels was also analyzed.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Microstructural Evolution During Cold Rolling and Subsequent Annealing in Low-Carbon Steel with Different Initial Microstructures
    Toshio Ogawa
    Hiroyuki Dannoshita
    Kuniaki Maruoka
    Kohsaku Ushioda
    Journal of Materials Engineering and Performance, 2017, 26 : 3821 - 3830
  • [22] Microstructural Evolution During Cold Rolling and Subsequent Annealing in Low-Carbon Steel with Different Initial Microstructures
    Ogawa, Toshio
    Dannoshita, Hiroyuki
    Maruoka, Kuniaki
    Ushioda, Kohsaku
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2017, 26 (08) : 3821 - 3830
  • [23] EFFECT OF RETENTION AND MECHANICAL STABILITY OF RETAINED AUSTENITE ON TENSILE PROPERTIES IN LOW CARBON-LOW ALLOY TRIPHASE STEEL
    LIAN, S
    HUA, L
    MATERIALS SCIENCE AND TECHNOLOGY, 1995, 11 (05) : 499 - 507
  • [24] A nanograined/ultrafine-grained low-carbon microalloyed steel processed by warm rolling
    Hu, Jun
    Du, Lin-Xiu
    Xie, Hui
    Yu, Peng
    Misra, R. D. K.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 605 : 186 - 191
  • [25] An Investigation of Friction Coefficient on Microstructure and Texture Evolution of Interstitial-Free Steel during Warm Rolling and Subsequent Annealing
    Pan, Hongbo
    Wan, Yong
    Wang, Huiting
    Shen, Xiaohui
    Fu, Bin
    Li, D. Y.
    Dai, Yongjuan
    Yan, Jun
    CRYSTALS, 2019, 9 (11):
  • [26] Microstructure evolution during warm deformation of low carbon steel with dispersed cementite
    Gallego, J.
    Jorge, A. M., Jr.
    Balancin, O.
    RECRYSTALLIZATION AND GRAIN GROWTH III, PTS 1 AND 2, 2007, 558-559 : 505 - +
  • [27] Submicrocryctalline structure and properties of 05G2MFB low carbon steel processed by severe warm rolling
    Sergeev, S. N.
    Safarov, I. M.
    Korznikov, A. V.
    LETTERS ON MATERIALS-PIS MA O MATERIALAKH, 2012, 2 (02): : 74 - 77
  • [28] The effect of warm rolling on structure and mechanical properties of low carbon pipe steel
    Sergeev, S. N.
    Safarov, I. M.
    Korznikov, A. V.
    Galeyev, R. M.
    Gladkovsky, S. V.
    Dvoynikov, D. I.
    LETTERS ON MATERIALS-PIS MA O MATERIALAKH, 2015, 5 (01): : 48 - 51
  • [29] Delamination Effect on Impact Properties of Ultrafine-Grained Low-Carbon Steel Processed by Warm Caliber Rolling
    Inoue, Tadanobu
    Yin, Fuxing
    Kimura, Yuuji
    Tsuzaki, Kaneaki
    Ochiai, Shojiro
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2010, 41A (02): : 341 - 355
  • [30] Delamination Effect on Impact Properties of Ultrafine-Grained Low-Carbon Steel Processed by Warm Caliber Rolling
    Tadanobu Inoue
    Fuxing Yin
    Yuuji Kimura
    Kaneaki Tsuzaki
    Shojiro Ochiai
    Metallurgical and Materials Transactions A, 2010, 41 : 341 - 355