Guided Data Discovery in Interactive Visualizations via Active Search

被引:3
|
作者
Monadjemi, Shayan [1 ]
Ha, Sunwoo [1 ]
Quan Nguyen [1 ]
Chai, Henry [2 ]
Garnett, Roman [1 ]
Ottley, Alvitta [1 ]
机构
[1] Washington Univ, St Louis, MO 63110 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
Human-centered computing; Visual analytics; Empirical studies in visualization Computing methodologies; Active learning settings; USER INTERACTIONS; FRAMEWORK;
D O I
10.1109/VIS54862.2022.00023
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Recent advances in visual analytics have enabled us to learn from user interactions and uncover analytic goals. These innovations set the foundation for actively guiding users during data exploration. Providing such guidance will become more critical as datasets grow in size and complexity, precluding exhaustive investigation. Meanwhile, the machine learning community also struggles with datasets growing in size and complexity, precluding exhaustive labeling. Active learning is a broad family of algorithms developed for actively guiding models during training. We will consider the intersection of these analogous research thrusts. First, we discuss the nuances of matching the choice of an active learning algorithm to the task at hand. This is critical for performance, a fact we demonstrate in a simulation study. We then present results of a user study for the particular task of data discovery guided by an active learning algorithm specifically designed for this task.
引用
收藏
页码:70 / 74
页数:5
相关论文
共 50 条
  • [31] Interactive Intent Modeling: Information Discovery Beyond Search
    Ruotsalo, Tuukka
    Jacucci, Giulio
    Myllymaki, Petri
    Kaski, Samuel
    COMMUNICATIONS OF THE ACM, 2015, 58 (01) : 86 - 92
  • [32] COMPLEXITY, GUIDED SEARCH, AND THE DATA
    WOLFE, JM
    BEHAVIORAL AND BRAIN SCIENCES, 1990, 13 (03) : 457 - 457
  • [33] DVQA: Understanding Data Visualizations via Question Answering
    Kafle, Kushal
    Price, Brian
    Cohen, Scott
    Kanan, Christopher
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5648 - 5656
  • [34] Interactive Relationship Discovery via the Semantic Web
    Heim, Philipp
    Lohmann, Steffen
    Stegemann, Timo
    SEMANTIC WEB: RESEARCH AND APPLICATIONS, PT 1, PROCEEDINGS, 2010, 6088 : 303 - +
  • [35] Vispedia*: Interactive Visual Exploration of Wikipedia Data via Search-Based Integration
    Chan, Bryan
    Wu, Leslie
    Talbot, Justin
    Cammarano, Mike
    Hanrahan, Pat
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2008, 14 (06) : 1213 - 1220
  • [36] InTool Explorer: An Interactive Exploratory Analysis Tool for Versatile Visualizations of Neuroscientific Data
    Furcila, Diana
    Garcia, Marcos
    Toader, Cosmin
    Morales, Juan
    LaTorre, Antonio
    Rodriguez, Angel
    Pastor, Luis
    DeFelipe, Javier
    Alonso-Nanclares, Lidia
    FRONTIERS IN NEUROANATOMY, 2019, 13
  • [37] Improving Comprehension Efficiency of High Content Screening Data Through Interactive Visualizations
    Omta, Wienand A.
    de Nobel, Jacob
    Klumperman, Judith
    Egan, David A.
    Spruit, Marco R.
    Brinkhuis, Matthieu J. S.
    ASSAY AND DRUG DEVELOPMENT TECHNOLOGIES, 2017, 15 (06) : 247 - 256
  • [38] Active phase discovery in heterogeneous catalysis via topology-guided sampling and machine learning
    Zheng, Shisheng
    Zhang, Xi-Ming
    Liu, Heng-Su
    Liang, Ge-Hao
    Zhang, Si-Wang
    Zhang, Wentao
    Wang, Bingxu
    Yang, Jingling
    Jin, Xian'an
    Pan, Feng
    Li, Jian-Feng
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [39] Hagerstrand revisited: interactive space-time visualizations of complex spatial data
    Hedley, Nicholas R.
    Drew, Christina H.
    Arfin, Emily A.
    Lee, Angela
    Informatica (Ljubljana), 1999, 23 (02): : 155 - 168
  • [40] VoxLens: Making Online Data Visualizations Accessible with an Interactive JavaScript Plug-In
    Sharif, Ather
    Wang, Olivia H.
    Muongchan, Alida T.
    Reinecke, Katharina
    Wobbrock, Jacob O.
    Conference on Human Factors in Computing Systems - Proceedings, 2022,