A Lower Limb-Pelvis Finite Element Model with 3D Active Muscles

被引:51
|
作者
Mo, Fuhao [1 ]
Li, Fan [1 ]
Behr, Michel [2 ]
Xiao, Zhi [1 ]
Zhang, Guanjun [1 ]
Du, Xianping [3 ]
机构
[1] Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China
[2] Univ Mediterranee, IFSTTAR, Fac Med Nord, Lab Biomecan Appl, Blvd Pierre Dramard, F-13916 Marseille 20, France
[3] Embry Riddle Aeronaut Univ, Dept Mech Engn, Daytona Beach, FL 32114 USA
基金
中国国家自然科学基金;
关键词
Muscle; Lower limb; Pelvis; Active contraction; Finite element analysis; MICROMECHANICS; SIMULATIONS; TOLERANCE; WALKING; ANKLE;
D O I
10.1007/s10439-017-1942-1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A lower limb-pelvis finite element (FE) model with active three-dimensional (3D) muscles was developed in this study for biomechanical analysis of human body. The model geometry was mainly reconstructed from a male volunteer close to the anthropometry of a 50th percentile Chinese male. Tissue materials and structural features were established based on the literature and new implemented experimental tests. In particular, the muscle was modeled with a combination of truss and hexahedral elements to define its passive and active properties as well as to follow the detailed anatomy structure. Both passive and active properties of the model were validated against the experiments of Post-Mortem Human Surrogate (PMHS) and volunteers, respectively. The model was then used to simulate driver's emergency braking during frontal crashes and investigate Knee-Thigh-Hip (KTH) injury mechanisms and tolerances of the human body. A significant force and bending moment variance was noted for the driver's femur due to the effects of active muscle forces during emergency braking. In summary, the present lower limb-pelvis model can be applied in various research fields to support expensive and complex physical tests or corresponding device design.
引用
收藏
页码:86 / 96
页数:11
相关论文
共 50 条
  • [31] A new 3D finite element model of the spherical mandrelling process
    Maximov, Jordan T.
    Duncheva, Galya V.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2008, 44 (6-7) : 372 - 382
  • [32] 3D finite element models of shoulder muscles for computing lines of actions and moment arms
    Webb, Joshua D.
    Blemker, Silvia S.
    Delp, Scott L.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2014, 17 (08) : 829 - 837
  • [33] A 3D finite element model for free-surface flows
    Leupi, C.
    Miglio, E.
    Altinakar, M.
    Quarteroni, A.
    Deville, M. O.
    COMPUTERS & FLUIDS, 2009, 38 (10) : 1903 - 1916
  • [34] A finite element model for failure analysis of 3D braided composites
    Zeng, T
    Wu, LZ
    Guo, LC
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 366 (01): : 144 - 151
  • [35] Development of a 3D finite element model for shield EPB tunnelling
    Michael, Kavvadas
    Dimitris, Litsas
    Ioannis, Vazaios
    Petros, Fortsakis
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2017, 65 : 22 - 34
  • [36] Residual strains in the arterial wall: A 3D finite element model
    He, Fan
    Li, Xiao-Yang
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2008, 24 (11): : 1325 - 1337
  • [37] Mechanical analysis of 3D braided composites: a finite element model
    Zeng, T
    Wu, LZ
    Guo, LC
    COMPOSITE STRUCTURES, 2004, 64 (3-4) : 399 - 404
  • [38] Conception and evaluation of a 3D musculoskeletal finite element foot model
    Univ. Grenoble Alpes, CNRS, TIMC-IMAG, Grenoble, France
    不详
    不详
    不详
    Comput. Methods Biomech. Biomed. Eng., (2024-2025):
  • [39] Gediminas Hill Slopes Behavior in 3D Finite Element Model
    Skuodis, Sarunas
    Daugevicius, Mykolas
    Medzvieckas, Jurgis
    Sneideris, Arnoldas
    Jokubaitis, Aidas
    Rastenis, Justinas
    Valivonis, Juozas
    BUILDINGS, 2022, 12 (08)
  • [40] Development and validation of a finite element model of the pelvis
    Anderson, AE
    Peters, CL
    Tuttle, BD
    Weiss, JA
    2003 ADVANCES IN BIOENGINEERING, 2003, : 39 - 40