Dynamics of a buoyant gravity current propagating in a linearly stratified medium

被引:6
|
作者
Agrawal, Tanmay [1 ]
Peddada, Siva Heramb [1 ]
Chalamalla, Vamsi Krishna [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Appl Mech, Hauz Khas, New Delhi, India
关键词
MIXING EFFICIENCY; INTERNAL WAVES; FRONT SPEED; SIMULATION; TURBULENCE; FLUID; FLOW;
D O I
10.1063/5.0091683
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this study, we investigate partial- and full-depth buoyant gravity currents propagating along the top surface in a linearly stratified medium. Two- and three-dimensional numerical simulations are performed to study the effect of stratification and initial current depth, on the front speed, internal wave field, and turbulence characteristics. The stratification is varied through a non-dimensional parameter R = rho(0)-rho(C)/rho(b) - rho(0), ranging between 0.04 and 85, where rho(C) is the constant bulk density of the current fluid and rho(0), rho(b) represent the densities of the ambient fluid at the top and bottom surfaces, respectively. For large values of R (rho(0) - rho(C) >> rho(b) - rho(0)), we observe that the resulting Froude number (Fr = U/NH) is greater than 1 / pi, and the flow is characterized as supercritical, where the front speed exceeds the long wave speed. In the supercritical regime, Kelvin-Helmholtz billows are prominently seen along with an internal solitary wave, which propagates with the density front. As the R value decreases, the relative strength of the ambient stratification increases when compared to the horizontal density difference at the top surface, leading to a subcritical flow regime where the front speed is smaller when compared to the long-wave speed. The Kelvin-Helmholtz billows and the solitary wave gradually disappear, and vertically propagating high-mode internal waves are prominently seen for R < 1. Quantification of the Froude number for various values of R and h/H shows that it follows a power law, Fr proportional to (h / H x R )(1/2), with the proportionality constant 0.72. This scaling works well for all the partial-depth cases considered in this study, i.e., h / H = 1/8, 1/6, 1/4, and 1/3, while a slight deviation is observed for the full-depth gravity currents that correspond to h / H = 1.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Momentumless turblent wake dynamics in a linearly stratified medium. The results of numerical experiments
    Chernykh, GG
    Ilyushin, BB
    Voropayeva, OF
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2002, 17 (02) : 125 - 134
  • [32] On numerical modeling of the dynamics of turbulent wake behind a towed body in linearly stratified medium
    G. G. Chernykh
    O. A. Druzhinin
    A. V. Fomina
    N. P. Moshkin
    Journal of Engineering Thermophysics, 2012, 21 : 155 - 166
  • [33] Numerical Simulation of Dynamics of Weakly Heated Turbulent Mixing Zone in Linearly Stratified Medium
    G. G. Chernykh
    A. V. Fomina
    N. P. Moshkin
    Journal of Engineering Thermophysics, 2020, 29 : 674 - 685
  • [34] AXISYMMETRICAL INTRUSIVE GRAVITY CURRENTS IN LINEARLY STRATIFIED FLUIDS
    LEMCKERT, CJ
    IMBERGER, J
    JOURNAL OF HYDRAULIC ENGINEERING, 1993, 119 (06) : 662 - 679
  • [35] Vertical Round Buoyant Jets and Fountains in a Linearly, Density-Stratified Fluid
    Papanicolaou, Panos N.
    Stamoulis, George C.
    FLUIDS, 2020, 5 (04)
  • [36] Numerical Simulation of Vertical Buoyant Wall Jet Discharged into a Linearly Stratified Environment
    Zhang, Zhiyong
    Guo, Yakun
    Zeng, Jian
    Zheng, Jinhai
    Wu, Xiuguang
    JOURNAL OF HYDRAULIC ENGINEERING, 2018, 144 (07)
  • [37] Numerical models of the second and third orders for a momentumless turbulent wake dynamics in a linearly stratified medium
    Chernykh, G. G.
    Voropaeva, O. F.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2008, 23 (06) : 539 - 549
  • [38] LAMINAR AXISYMMETRICAL MULTICOMPONENT BUOYANT PLUMES IN A THERMALLY STRATIFIED MEDIUM
    SRINIVASAN, J
    ANGIRASA, D
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1990, 33 (08) : 1751 - 1757
  • [39] Entrainment dynamics of buoyant jets in a stably stratified environment
    Mukherjee, Partho
    Mirajkar, Harish N.
    Balasubramanian, Sridhar
    ENVIRONMENTAL FLUID MECHANICS, 2023, 23 (05) : 1051 - 1073
  • [40] Entrainment dynamics of buoyant jets in a stably stratified environment
    Partho Mukherjee
    Harish N. Mirajkar
    Sridhar Balasubramanian
    Environmental Fluid Mechanics, 2023, 23 : 1051 - 1073