From Oil Fields to Hilbert Schemes

被引:10
|
作者
Kreuzer, Martin [1 ]
Poulisse, Hennie
Robbiano, Lorenzo [2 ]
机构
[1] Univ Passau, Fak Informat & Math, D-94030 Passau, Germany
[2] Explorat Res, Explorat & Product, Rijswijk, Netherlands
关键词
oil field; polynomial system solving; eigenvalue method; Buchberger-Moller algorithm; border basis; approximate algorithm; border basis scheme; Grobner basis scheme; Hilbert scheme; FORM;
D O I
10.1007/978-3-211-99314-9_1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
New techniques for dealing with problems of numerical stability in computations involving multivariate polynomials allow a new approach to real world problems. Using a modelling problem for the optimization of oil production as a motivation, we present several recent developments involving border bases of polynomial ideals. After recalling the foundations of border basis theory in the exact case, we present a number of approximate techniques such as the eigenvalue method for polynomial system solving, the AVI algorithm for computing approximate border bases, and the SOI algorithm for computing stable order ideals. To get a deeper understanding for the algebra underlying this approximate world, we present recent advances concerning border basis and Grobner basis schemes. They are open subschemes of Hilbert schemes and parametrize flat families of border bases and Grobner bases. For the reader it will be a long, tortuous, sometimes dangerous, and hopefully fascinating journey from oil fields to Hilbert schemes.
引用
收藏
页码:1 / +
页数:3
相关论文
共 50 条
  • [41] Smooth and irreducible multigraded Hilbert schemes
    Maclagan, Diane
    Smith, Gregory G.
    ADVANCES IN MATHEMATICS, 2010, 223 (05) : 1608 - 1631
  • [42] Smooth Hilbert schemes: Their classification and geometry
    Skjelnes, Roy
    Smith, Gregory G.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (794): : 281 - 305
  • [43] DEFORMATION OF HILBERT SCHEMES OF POINTS ON A SURFACE
    FANTECHI, B
    COMPOSITIO MATHEMATICA, 1995, 98 (02) : 205 - 217
  • [44] THE FAT LOCUS OF HILBERT SCHEMES OF POINTS
    COPPENS, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (03) : 777 - 783
  • [45] Rational Cherednik algebras and Hilbert schemes
    Gordon, I
    Stafford, JT
    ADVANCES IN MATHEMATICS, 2005, 198 (01) : 222 - 274
  • [46] Hilbert schemes of a surface and Euler characteristics
    De Cataldo, MAA
    ARCHIV DER MATHEMATIK, 2000, 75 (01) : 59 - 64
  • [47] Elementary components of Hilbert schemes of points
    Jelisiejew, Joachim
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2019, 100 (01): : 249 - 272
  • [48] Hilbert schemes of points and Heisenberg algebras
    Ellingsrud, G
    Göttsche, L
    MODULI SPACES IN ALGEBRAIC GEOMETRY, 2000, 1 : 59 - +
  • [49] THE GEOMETRY OF DEGENERATIONS OF HILBERT SCHEMES OF POINTS
    Gulbrandsen, Martin G.
    Halle, Lars H.
    Hulek, Klaus
    Zhang, Ziyu
    JOURNAL OF ALGEBRAIC GEOMETRY, 2021, 30 (01) : 1 - 56
  • [50] Group completions via Hilbert schemes
    Brion, M
    JOURNAL OF ALGEBRAIC GEOMETRY, 2003, 12 (04) : 605 - 626