Axicon-based Bessel beams for flat-field illumination in total internal reflection fluorescence microscopy

被引:27
|
作者
Schreiber, Benjamin [1 ,2 ]
Elsayad, Kareem [2 ]
Heinze, Katrin G. [1 ]
机构
[1] Univ Wurzburg, Rudolf Virchow Ctr, Res Ctr Expt Biomed, Josef Schneider Str 2, D-97080 Wurzburg, Germany
[2] Vienna Bioctr Core Facil, Adv Microscopy Facil, Dr Bohr Gasse 3, A-1030 Vienna, Austria
关键词
LIGHT; CELLS; TIRF;
D O I
10.1364/OL.42.003880
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Total internal reflection fluorescence microscopy (TIRF-M) provides low-invasive high-contrast surface imaging with optical sectioning of typically 100-200 nm. Thus, TIRF-M has become an established tool for imaging surfaces, including cell membranes. For TIRF-M, a homogenous evanescent field of excitation over the whole field of view is generally desired for quantitative microscopy; however, this is not necessarily straightforward to generate with Gaussian beams. In recent years, several improvements on TIRF-M have been developed that have addressed non-uniform scattering fringes and other artifacts. Here, we introduce a cost-effective TIRF setup with a very low degree of complexity and no moving parts, which provides a flattop-like excitation profile. The setup uses a tunable laser ring zoom focus system to generate a full 360 degrees TIRF illumination. Two axicon lenses and one focus lens allow for generation and control of the ring diameter to tune the TIRF excitation angle. We show that 360 degrees laser illumination in combination with a radial polarizer will generate an evanescent Bessel-beam excitation field that exhibits a flattop intensity over an extended part of the field of view, and demonstrate the advantages of this axicon-based Bessel beam illumination for live-cell imaging. (C) 2017 Optical Society of America
引用
收藏
页码:3880 / 3883
页数:4
相关论文
共 50 条
  • [41] Imaging with total internal reflection fluorescence microscopy for the cell biologist
    Mattheyses, Alexa L.
    Simon, Sanford M.
    Rappoport, Joshua Z.
    JOURNAL OF CELL SCIENCE, 2010, 123 (21) : 3621 - 3628
  • [42] Total internal reflection fluorescence microscopy (TIRFM) in cell biology
    Schneckenburger, H
    CYTOMETRY PART A, 2006, 69A (01) : 46 - 46
  • [43] Total internal reflection fluorescence microscopy in single molecule nanobioscience
    Wazawa, T
    Ueda, M
    MICROSCOPY TECHNIQUES, 2005, 95 : 77 - 106
  • [44] Scanning total internal reflection fluorescence microscopy and its applications
    Chon, JWM
    Gu, M
    BIOMEDICAL APPLICATIONS OF MICRO- AND NANOENGINEERING, 2002, 4937 : 202 - 210
  • [45] Total Internal Reflection Fluorescence (TIRF) Microscopy of Chlamydomonas Flagella
    Engel, Benjamin D.
    Lechtreck, Karl-Ferdinand
    Sakai, Tsuyoshi
    Ikebe, Mitsuo
    Witman, George B.
    Marshall, Wallace F.
    CILIA: MODEL ORGANISMS AND INTRAFLAGELLAR TRANSPORT, 2009, 93 : 157 - +
  • [46] Direct characterization of the evanescent field in objective-type total internal reflection fluorescence microscopy
    Niederauer, Christian
    Blumhardt, Philipp
    Muecksch, Jonas
    Heymann, Michael
    Lambacher, Armin
    Schwille, Petra
    OPTICS EXPRESS, 2018, 26 (16): : 20492 - 20506
  • [47] Two-photon fluorescence scanning near-field microscopy based on a focused evanescent field under total internal reflection
    Chon, JWM
    Gu, M
    Bullen, C
    Mulvaney, P
    OPTICS LETTERS, 2003, 28 (20) : 1930 - 1932
  • [48] Tuning fluorophore excitation in a total-internal-reflection-fluorescence microscopy
    Sheykhi, Elham
    Sajad, Batool
    Tavaddod, Sharareh
    Naderi-Manesh, Hossein
    Roostaiei, Neda
    APPLIED OPTICS, 2019, 58 (29) : 8055 - 8060
  • [49] A NEW APPROACH FOR SPOT DETECTION IN TOTAL INTERNAL REFLECTION FLUORESCENCE MICROSCOPY
    Rezatofighi, Seyed Hamid
    Hartley, Richard
    Hughes, William E.
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 860 - 863
  • [50] Secretory vesicle motions studied by total internal reflection fluorescence microscopy
    Huet, S
    Tran, VS
    Karatekin, E
    Fanget, I
    Cribier, S
    Henry, JP
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 259A - 259A